分析 把函數(shù)y=$\frac{1}{m{x}^{2}-2mx+m+6}$的定義域為R,轉(zhuǎn)化為對任意x∈Rmx2-2mx+m+6≠0恒成立,然后分m=0和m≠0分類求解得答案.
解答 解:∵y=$\frac{1}{m{x}^{2}-2mx+m+6}$的定義域為R,
∴當m=0時成立;
當m≠0時,需△=(-2m)2-4m(m+6)=-24m<0,即m>0.
∴使函數(shù)y=$\frac{1}{m{x}^{2}-2mx+m+6}$的定義域為R的實數(shù)m的取值范圍為[0,+∞).
點評 本題考查函數(shù)的定義域及其求法,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥2 | B. | a>2 | C. | a<2 | D. | a≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 存在k∈N,使a4k+1>0 | B. | 任給k∈N,使a${\;}_{{2}^{k}}$+1>0 | ||
C. | 不存在k∈N,使a3k+2<0 | D. | $\sqrt{{a}_{4n+1}{a}_{4n+9}}$=-a4n+5(n∈N) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow a$=(1,2),$\overrightarrow b$=(0,0) | B. | $\overrightarrow a$=(1,-2),$\overrightarrow b$=(3,5) | C. | $\overrightarrow a$=(3,2),$\overrightarrow b$=(9,6) | D. | $\overrightarrow a$=(-3,3),$\overrightarrow b$=(2,-2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com