分析 由極坐標方程求出圓的普通方程為x2+y2-4x+4y+6=0,由此得到圓的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\sqrt{2}cosθ}\\{y=-2+\sqrt{2}sinθ}\end{array}\right.$,θ為參數(shù),從而能求出x+y的最大值.
解答 解:∵圓的極坐標方程為:ρ2-4$\sqrt{2}$$ρcos(θ+\frac{π}{4})$+6=0,
∴ρ2-4$\sqrt{2}$ρ(cosθcos$\frac{π}{4}$-sinθsin$\frac{π}{4}$)+6=0,
∴ρ2-4ρcosθ+4ρsinθ+6=0,
∴x2+y2-4x+4y+6=0,
圓心(2,-2),半徑r=$\frac{1}{2}\sqrt{16+16-24}$=$\sqrt{2}$,
∴$\left\{\begin{array}{l}{x=2+\sqrt{2}cosθ}\\{y=-2+\sqrt{2}sinθ}\end{array}\right.$,θ為參數(shù),
∴x+y=$\sqrt{2}sinθ+\sqrt{2}cosθ$=2sin($θ+\frac{π}{4}$),
∴x+y的最大值為2.
故答案為:2.
點評 本題考查代數(shù)式的最大值的求法,是中檔題,解題時要注意圓的極坐標方程、參數(shù)方程、普通方程的互化,注意三角函數(shù)性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com