16.已知集合A={x|$\frac{1}{2}$≤2x≤4},B={x|lg(x-1)≤1},則A∩B=(1,2].

分析 化簡集合A、B,求出A∩B即可.

解答 解:∵集合A={x|$\frac{1}{2}$≤2x≤4}={x|-1≤x≤2},
B={x|lg(x-1)≤1}={x|0<x-1≤10}={x|1<x≤11},
∴A∩B={x|1<x≤2}=(1,2].
故答案為:(1,2].

點評 本題考查了集合的化簡與簡單運算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,且滿足2acosC=2b-$\sqrt{3}$c.
(1)求A的大。
(2)現(xiàn)給出三個條件:①a=2; ②B=45°;③c=$\sqrt{3}$b.試從中選出兩個可以確定△ABC的條件,寫出你的選擇并以此為依據(jù)求△ABC的面積 (只需寫出一個選定方案即可,選多種方案以第一種方案記分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若不等式x2+ax+1≥0對一切x∈(0,$\frac{3}{2}}$]成立,則a的最小值是-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)等差數(shù)列{an}的前n項和為Sn,若S4=8,S8=20,求此等差數(shù)列的首項a1和公差d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.以直角坐標系xOy的原點O為極點、x軸的正半軸為極軸建立極坐標系,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}a+1}\\{y=\frac{\sqrt{3}}{2}a-5}\end{array}\right.$(a為參數(shù)),圓C的極坐標方程為ρ=8sinθ
(1)求圓C的圓心極坐標與半徑;
(2)判斷直線l與圓C的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.正棱錐S-ABCD的底面邊長為4,高為1,求:
(1)棱錐的側(cè)棱長和斜高;
(2)棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.圓(x+2)2+y2=1與圓(x-2)2+(y-1)2=16的位置關(guān)系為( 。
A.相交B.相離C.外切D.內(nèi)切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=x3-3ax+b(a≠0).
(1)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若曲線y=f(x)在點(2,f(2))處與直線y=8相切,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,△ABD是邊長為2$\sqrt{3}$的正三角形,∠CBD=∠CDB=30°,E為棱PA的中點.
(1)求證:DE∥平面PBC;
(2)若平面PAB⊥平面ABCD,PA=PB=2,求二面角P-BC-E的余弦值.

查看答案和解析>>

同步練習(xí)冊答案