已知函數(shù)f(x)=x3+ax2+b在x=1處的切線方程為y=x+1.
①求a,b的值;
②求函數(shù)f(x)在區(qū)間[-1,
1
2
]上的值域.
考點:利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:①由題意先求f(x)的導(dǎo)函數(shù),利用導(dǎo)數(shù)的幾何含義和切點的實質(zhì),建立a,b的方程求解即可;
②求f(x)的導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,即可求函數(shù)f(x)在區(qū)間[-1,
1
2
]上的值域.
解答: 解:①f′(x)=3x2+2ax,
∵函數(shù)f(x)在x=1處的切線方程為y=x+1,
∴f′(1)=3+2a=1,即a=1,
又f(1)=2,得2+b=2,∴b=0;
②由①知f(x)=x3+x2,f′(x)=3x2+2x,
∴函數(shù)在[-1,-
2
3
],[0,
1
2
]上單調(diào)遞增,在[-
2
3
,0]上單調(diào)遞減,
∵f(-1)=f(0)=0,f(-
2
3
)=
4
27
,f(
1
2
)=
3
8
,
∴函數(shù)f(x)在區(qū)間[-1,
1
2
]上的值域為[0,
3
8
].
點評:本題考查函數(shù)的性質(zhì),考查導(dǎo)數(shù)知識的運用,考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-x2-3.
(1)求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)-m在[-1,2]上有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2+3x;
(1)若函數(shù)在x=1處的切線與直線x+2y-1=0垂直,求實數(shù)a的值;
(2)若函數(shù)在區(qū)間[1,+∞)內(nèi)為增函數(shù),求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且Sn=n2+2n,
(1)求數(shù)列{an}的通項公式;
(2)令bn=
1
Sn
,且數(shù)列{bn}的前n項和為Tn,求Tn;
(3)若數(shù)列{cn}滿足條件:cn+1=acn+2n,又c1=3,是否存在實數(shù)λ,使得數(shù)列{
cn
2n
}為等差數(shù)列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=(1-x)f(x)
(1)求y=f(x)在點(1,0)處的切線方程;
(2)判斷h(x)=g′(x)及g(x)在區(qū)間(1,+∞)上的單調(diào)性;
(3)證明:x>e
2x-2
x2+1
在(1,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)在(0,+∞)上恒有xf′(x)>f(x)成立(其中f′(x)為f(x)的導(dǎo)函數(shù)),則稱這類函數(shù)為A類函數(shù).
(1)若函數(shù)g(x)=x2-1,試判斷g(x)是否為A類函數(shù);
(2)若函數(shù)h(x)=ax-3-lnx-
1-a
x
是A類函數(shù),求實數(shù)a的取值范圍;
(3)若函數(shù)f(x)是A類函數(shù),當(dāng)x1>0,x2>0時,證明f(x1)+f(x2)<f(x1)+f(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
sinx
2+cosx

(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)≤a在[0,2π]有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=
1
2
,an+1=
1
2
an+1(n∈N+),令bn=an-2
(1)求證:{bn}是等比數(shù)列,并求bn
(2)求通項an,并求{an}前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
,
b
的模分別為3和2,是否存在實數(shù)x,使得(
a
-x
b
)⊥
a
,若存在,求出x的取值范圍,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案