5.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(2,k).
(1)若($\overrightarrow{a}$+2$\overrightarrow$)∥($\overrightarrow{a}$-$\overrightarrow$),求k的值.
(2)若($\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow{a}$-$\overrightarrow$),求k的值.

分析 利用向量的共線與垂直的充要條件列出方程求解即可.

解答 解:$\overrightarrow{a}$=(3,4),$\overrightarrow$=(2,k).
(1)$\overrightarrow{a}$+2$\overrightarrow$=(7,4+2k),$\overrightarrow{a}$-$\overrightarrow$=(1,4-k),
($\overrightarrow{a}$+2$\overrightarrow$)∥($\overrightarrow{a}$-$\overrightarrow$),
可得:28-7k=4+2k,
解得k=$\frac{8}{3}$.
(2)$\overrightarrow{a}$+$\overrightarrow$=(5,4+k).
$\overrightarrow{a}$-$\overrightarrow$=(1,4-k),
($\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow{a}$-$\overrightarrow$),
可得:5+16-k2=0,
解得k=±$\sqrt{21}$.

點評 本題考查向量共線與垂直的充要條件的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.命題p:|x+2|>2,命題q:x2-3x+2<0,則¬q是¬p成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.師大附中高一研究性學(xué)習(xí)小組,在某一高速公路服務(wù)區(qū),從小型汽車中按進(jìn)服務(wù)區(qū)的先后,以每間隔10輛就抽取一輛的抽樣方法抽取20名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速(km/h)分成六段:[70,75),[75,80),[80,85),[85,90),[90,95),[95,100]統(tǒng)計后得到如圖的頻率分布直方圖.
(1)此研究性學(xué)習(xí)小組在采集中,用到的是什么抽樣方法?并求這20輛小型汽車車速的眾數(shù)和中位數(shù)的估計值;
(2)若從車速在[80,90)的車輛中做任意抽取3輛,求車速在[80,85)和[85,90)內(nèi)都有車輛的概率;
(3)若從車速在[90,100)的車輛中任意抽取3輛,求車速在[90,95)的車輛數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.求由曲線y=(x+2)2與x軸及直線y=4-x所圍成的平面圖形的面積$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.點P(1,0)到曲線$\left\{{\begin{array}{l}{x={t^2}}\\{y=2t}\end{array}}\right.$(其中參數(shù)t∈R)上的點的最短距離為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)拋物線C:y2=4x的焦點為F,直線l過F且與C交于A、B兩點,若|AF|=3|BF|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=x4-4x3+10x2,則方程f(x)=27在[2,3]上的根的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.△ABC中,角A.B,C的對邊分別為3,4,5,點H位于AB邊上,沿CH折疊△ABC,若折疊過程中始終有AB⊥CH,則三棱錐H-ABC的體積的最大值為$\frac{288}{125}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,角A,B,C的對邊分別是a,b,c,其面積為$\frac{3\sqrt{3}}{2}$,且c+2acosC=2b.
(1)求角A
(2)若a=$\sqrt{7}$,求b+c的值.

查看答案和解析>>

同步練習(xí)冊答案