分析 做出輔助線連接ON,根據(jù)切線得到直角,根據(jù)垂直得到直角,即∠ONB+∠BNP=90°且∠OBN+∠BMO=90°,根據(jù)同角的余角相等,得到角的相等關(guān)系,得到結(jié)論
解答 證明:連接ON,則
∵PN切⊙O于N,
∴∠ONP=90°,
∴∠ONB+∠BNP=90°
∵OB=ON,
∴∠OBN=∠ONB,
∵OB⊥AC于O,
∴∠OBN+∠BMO=90°,
故∠BNP=∠BMO=∠PMN,PM=PN,
∴PM2=PN2=PA•PC.
點評 本題要求證明一個PM2=PA•PC結(jié)論,實際上這是一個名叫切割線定理的結(jié)論,可以根據(jù)三角形相似對應邊成比例來證明,這是一個基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若a、b的軌跡為直線,則c的軌跡必為直線 | |
B. | 若c的軌跡為直線,則a、b必為勻速運動 | |
C. | 若a為勻速直線運動,b為勻速直線運動,則c必為勻速直線運動 | |
D. | 若a、b均為初速度為零的勻變速直線運動,則c必為勻變速直線運動 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [2,+∞) | B. | $(1,\frac{5}{2})$ | C. | $(2,\frac{5}{2})$ | D. | [1,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>c>b | B. | b>c>a | C. | b>a>c | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ②④ | C. | ③④ | D. | ②③ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com