10.已知F(x)=$\frac{1}{x+1}$,f(x)=F′(x),求${∫}_{0}^{1}$f(x)dx.

分析 直接利用定積分的運算法則化簡求解即可.

解答 解:F(x)=$\frac{1}{x+1}$,f(x)=F′(x),
${∫}_{0}^{1}$f(x)dx=$\frac{1}{x+1}{|}_{0}^{1}$=$\frac{1}{2}-1$=$-\frac{1}{2}$.

點評 本題考查定積分的運算法則,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={2,3},B={x|(x-2)(x+2)=0},則A∪B=(  )
A.B.{2}C.{2,3}D.{-2,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=-mcos(ωx+φ)(m>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,點A,B,C為f(x)的圖象與坐標(biāo)軸的交點,且A(1,0),D($\frac{5}{3}$,-$\frac{10}{3}$),$\overrightarrow{CD}$=$\frac{1}{2}$$\overrightarrow{DB}$,則m=5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)={cos^2}x+{cos^2}(x-\frac{π}{6})$,x∈R
(Ⅰ)求f(x)最小正周期;
(Ⅱ)求f(x)在區(qū)間$[-\frac{π}{3},\frac{π}{4}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{3}+ax+\frac{1}{2},(x≤1)}\\{2{a}^{x}-1,(x>1)}\end{array}\right.$(a>0且a≠1)在區(qū)間[$\frac{1}{2}$,+∞)內(nèi)單調(diào)遞減,則a的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,角A、B、C所對的邊分別為a、b、c.若B=$\frac{π}{3}$,S△ABC=$\sqrt{3}$,則b的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}滿足(n+1)an+1-nan=2,且a1=1,則該數(shù)列的通項公式是an=2-$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(α>b>0)經(jīng)過點($\sqrt{2}$,$\sqrt{3}$),且原點、焦點,短軸的端點構(gòu)成等腰直角三角形.
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線(切線斜率存在)與橢圓C恒有兩個交點A,B.且$\overrightarrow{OA}⊥\overrightarrow{OB}$?若存在,求出該圓的方程,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,sinA=-cosBcosC,且tanBtanC=1-$\sqrt{3}$,求角A.

查看答案和解析>>

同步練習(xí)冊答案