不等式|2x-1|+1<0的解集為
 
考點(diǎn):其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:原不等式等價(jià)于
2x-1≥0
(2x-1)+1<0
,①或
2x-1<0
-(2x-1)+1<0
,②,分別解不等式組取并集可得.
解答: 解:不等式|2x-1|+1<0等價(jià)于
2x-1≥0
(2x-1)+1<0
,①或
2x-1<0
-(2x-1)+1<0
,②
解①可得x∈∅,解②可得x∈∅,
∴原不等式的解集為∅
故答案為:∅
點(diǎn)評:本題考查絕對值不等式的解集,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)隨機(jī)變量X~N(1,4),且P(X≤a)=P(X>2),則實(shí)數(shù)a的值為( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點(diǎn)為F,直線x=t(t>0,且t≠1)與拋物線交于A,B兩點(diǎn)(點(diǎn)A在第一象限),定點(diǎn)Q的坐標(biāo)為(-1,0),直線QA與拋物線的另一個(gè)交點(diǎn)為點(diǎn)M.
(1)求證:點(diǎn)M,F(xiàn),B三點(diǎn)共線;
(2)當(dāng)2≤t≤3時(shí),求
|MA|
|MB|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1+sin2x,sinx-cosx),
b
=(1,sinx+cosx),函數(shù)f(x)=
a
b

(1)求f(x)的最小正周期;
(2)求f(x)的最大值及相應(yīng)x的值;
(3)若f(θ)=
8
5
,求cos2(
π
4
-2θ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)空間被分為5個(gè)不交的非空集合,證明:一定有一個(gè)平面,它至少與其中的四個(gè)集合有公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導(dǎo)函數(shù)f′(x)<
1
3
,則f(x)<
x
3
+
2
3
的解集為( 。
A、{x|-1<x<1}
B、{x|<-1}
C、{x|x<-1或x>1}
D、{x|x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一直線上有一點(diǎn)在已知平面外,則下列結(jié)論中正確的是( 。
A、直線與平面平行
B、直線與平面相交
C、直線上至少有一個(gè)點(diǎn)在平面內(nèi)
D、直線上有無數(shù)多個(gè)點(diǎn)都在平面外

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
1
2
x2
(1)求函數(shù)f(x)的極值;
(2)若關(guān)于x的方程f(x)+2bx=0在區(qū)間(0,e]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的最大值;
(3)若對任意x∈[
1
e
,1],不等式|a-2lnx|+ln[f′(x)+x]>0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

水平桌面α上放有4個(gè)半徑均為2的球,且相鄰的球都相切(球心的連線構(gòu)成正方形).在這4個(gè)球的上面放一個(gè)半徑為1的小球,它和下面的4個(gè)球恰好相切,則小球的球心到水平桌面α的距離是
 

查看答案和解析>>

同步練習(xí)冊答案