13.若一個(gè)長方體內(nèi)接于表面積為4π的球,則這個(gè)長方體的表面積的最大值是8.

分析 設(shè)出長方體的三度,求出長方體的對角線的長就是確定直徑,推出長方體的表面積的表達(dá)式,然后求出最大值.

解答 解:表面積為4π的球的半徑為1.
設(shè)長方體的三度為:a,b,c,由題意可知a2+b2+c2=4,
長方體的表面積為:2ab+2ac+2bc≤2a2+2b2+2c2=8;
即a=b=c時(shí)取得最大值,也就是長方體為正方體時(shí),表面積最大,最大為8.
故答案為:8.

點(diǎn)評 本題是中檔題,考查長方體的外接球的知識,長方體的表面積的最大值的求法,基本不等式的應(yīng)用,考查計(jì)算能力;注意利用基本不等式求最值時(shí),正、定、等的條件的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.執(zhí)行如圖所示的程序,若輸入的x=3,則輸出的所有x的值的和為( 。
A.243B.363C.729D.1092

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=2tan(2x+$\frac{π}{6}$)的最小正周期是(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若三棱錐S-ABC的底面是以AB為斜邊的等腰直角三角形,AB=2,SA=SB=SC=2,則該三棱錐的外接球的表面積為( 。
A.$\frac{16}{3}π$B.$\frac{{4\sqrt{3}}}{3}π$C.$\frac{4}{3}π$D.$\frac{8}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA⊥面ABCD,E為PD的中點(diǎn).
(1)求證:PB∥平面AEC;
(2)設(shè)AP=1,AD=2,∠ABC=60°,求點(diǎn)A到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知某幾何體的三視圖如圖,正(主)視圖中的弧線是半圓,根據(jù)圖中標(biāo)出的尺寸,可得這個(gè)幾何體的表面積是3π+4(單位:cm2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=(x-2)2+alnx.
(1)若a=-6,求f(x)的單調(diào)區(qū)間;
(2)若f(x)存在兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求證:$\frac{f({x}_{1})}{{x}_{2}}$≥2(1-e${\;}^{-\frac{1}{2}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.要完成下列3項(xiàng)抽樣調(diào)查:
①從15瓶飲料中抽取5瓶進(jìn)行食品衛(wèi)生檢查.
②某校報(bào)告廳有25排,每排有38個(gè)座位,有一次報(bào)告會恰好坐滿了學(xué)生,報(bào)告會結(jié)束后,為了聽取意見,需要抽取25名學(xué)生進(jìn)行座談.
③某中學(xué)共有240名教職工,其中一般教師180名,行政人員24名,后勤人員36名.為了了解教職工對學(xué)校在校務(wù)公開方面的意見,擬抽取一個(gè)容量為20的樣本.
較為合理的抽樣方法是(  )
A.①簡單隨機(jī)抽樣,②系統(tǒng)抽樣,③分層抽樣
B.①簡單隨機(jī)抽樣,②分層抽樣,③系統(tǒng)抽樣
C.①系統(tǒng)抽樣,②簡單隨機(jī)抽樣,③分層抽樣
D.①分層抽樣,②系統(tǒng)抽樣,③簡單隨機(jī)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若直線的參數(shù)方程為$\left\{\begin{array}{l}x=1+\sqrt{3}t\\ y=3-3t\end{array}\right.$(t為參數(shù)),則直線的傾斜角為(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步練習(xí)冊答案