8.己知正方體ABCD-A1B1C1D1中,E為BC的中點(diǎn),求異面直線A1C、DE所成角的余弦值.

分析 以A為原點(diǎn),AB為x軸,AD為y軸,AA1為z軸,建立空間直角系,利用向量法能求出異面直線A1C、DE所成角的余弦值.

解答 解:以A為原點(diǎn),AB為x軸,AD為y軸,AA1為z軸,建立空間直角系,設(shè)正方體ABCD-A1B1C1D1中棱長(zhǎng)為2,
則A1(0,0,2),C(2,2,0),D(0,2,0),E(2,1,0),
$\overrightarrow{{A}_{1}C}$=(2,2,-2),$\overrightarrow{DE}$=(2,-1,0),
設(shè)異面直線A1C、DE所成角為θ,
則cosθ=$\frac{|\overrightarrow{{A}_{1}C}•\overrightarrow{DE}|}{|\overrightarrow{{A}_{1}C}|•|\overrightarrow{DE}|}$=$\frac{2}{\sqrt{12}•\sqrt{5}}$=$\frac{\sqrt{15}}{15}$.
∴異面直線A1C、DE所成角的余弦值為$\frac{\sqrt{15}}{15}$.

點(diǎn)評(píng) 本題考查異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=lnx-x.
(1)求函數(shù)g(x)=f(x)-x-2的圖象在x=1處的切線方程;
(2)證明:|f(x)|>$\frac{lnx}{x}$+$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=lnx-mx(m∈R).
(I)若m=1,求曲線y=f(x)在點(diǎn)P(1,-1)處的切線方程;
(Ⅱ)討論函數(shù)f(x)在(1,e)上的單調(diào)性,;
(Ⅲ)若曲線y=f(x)與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),求證:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=-2x2-kx+8在區(qū)間[1,2]上是單調(diào)函數(shù),則k的取值范圍是( 。
A.(-∞,-8]B.[-8,-4]C.(-∞,4]∪[8,+∞)D.(-∞,-8]∪[-4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知α:|x|>1,求β,使β分別為α的
(1)必要非充分條件,β:|x|>$\frac{1}{2}$.
(2)充分非必要條件,β:|x|>2.
(3)充要條件,β:x>1或x<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合M={x|y=$\frac{1}{\sqrt{4-2x}}$+1},集合N={y|y=-x2+4x-2},則集合M與集合N的關(guān)系為(  )
A.M?NB.M?NC.M=ND.M?N

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,已知直線a∥平面α,在平面α內(nèi)有一動(dòng)點(diǎn)P,點(diǎn)A是定直線a上定點(diǎn),且AP與a所成角為θ(θ為銳角),點(diǎn)A到平面α距離為d,則動(dòng)點(diǎn)P的軌跡方程為( 。
A.tan2θx2+y2=d2B.tan2θx2-y2=d2C.${y^2}=2d(x-\fracxq0zujy{tanθ})$D.${y^2}=-2d(x-\fracyyg2q2s{tanθ})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)A={x||x-1|>2},B={x||x-5|<k},若A∪B=A,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知集合A={y|y=x2-3x+1,x∈[$\frac{3}{2}$,2]},B={x|x+2m≥0};命題p:x∈A,命題q:x∈B,并且p是q的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案