若兩條直線y=a2x-1與y=(a+2)x-a+1互相平行,則a等于( 。
A、2B、1C、-2D、-1
考點(diǎn):直線的一般式方程與直線的平行關(guān)系
專題:直線與圓
分析:由平行線可得a2=a+2,解方程排除重合即可.
解答: 解:∵兩條直線y=a2x-1與y=(a+2)x-a+1互相平行,
∴a2=a+2,解得a=-1或a=2,
當(dāng)a=-1時(shí),兩直線平行,
當(dāng)a=2時(shí),兩直線重合,
故選:D
點(diǎn)評:本題考查直線的一般式方程和平行關(guān)系,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正四面體ABCD的棱長為1,其中線段AB∥平面α,E,F(xiàn)分別是線段AD和BC的中點(diǎn),當(dāng)正四面體繞以AB為軸旋轉(zhuǎn)時(shí),線段EF在平面α上的射影E1F1長的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x-1,則f(-1)=( 。
A、-3B、-1C、1D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若隨機(jī)變量X~B(8,
3
5
),則D(
1
2
X)的值為(  )
A、
12
5
B、
6
5
C、
12
25
D、
24
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>1,-1<b<0,那么(  )
A、ab>b
B、ab<-a
C、ab2<ab
D、ab2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈N|0<x<3},B={x|x-1>0},則A∩B=(  )
A、∅B、{1}
C、{2}D、{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x+4x-3的零點(diǎn)所在區(qū)間是(  )
A、(
1
4
,
1
2
B、(-
1
4
,0)
C、(0,
1
4
D、(
1
2
,
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論中,正確的是( 。
A、若a>b,則a2>b2
B、若a>b,c>d,則ac>bd
C、若a-c>a-d,則c>d
D、若a>b,則a(c2+1)>b(c2+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表是某種產(chǎn)品銷售收入與銷售量之間的一組數(shù)據(jù):
銷售量x(噸)2356
銷售收入y(千元)78912
(1)畫出散點(diǎn)圖;
(2)求出回歸方程;
(3)根據(jù)回歸方程估計(jì)銷售量為9噸時(shí)的銷售收入.
(參考公式:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
xy
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

同步練習(xí)冊答案