已知向量若
=(1,0),
=(1,
),則|
+t
|(t∈R,且t≠0)的最小值為( 。
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題
分析:可以先求出|
+t
|
2的最小值,利用向量數(shù)量積的運(yùn)算化為關(guān)于t的函數(shù),利用基本不等式求最小值.
解答:
解:
=(1,0),
=(1,
),
2=1,
•
=1,
2=4
∴|
+t
|
2=
2+2
•
+t
22=
+2+4t
2=
≥2+2=6,
∴|
+t
|的最小值為
故選:B.
點(diǎn)評(píng):本題考查向量模的計(jì)算,函數(shù)最值求解,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
如圖所示,要在山坡上A、B兩點(diǎn)處測(cè)量與地面垂直的塔樓CD的高.如果從A、B兩處測(cè)得塔頂?shù)母┙欠謩e為30°和15°,AB的距離是30米,斜坡AD與水平面成45°角,A、B、D三點(diǎn)共線,則塔樓CD的高度為
米.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
設(shè)直線3x+4y-5=0與圓C
1:x
2+y
2=4交于A,B兩點(diǎn),若圓C
2的圓心在線段AB上,且圓C
2與圓C
1相切,切點(diǎn)在圓C
1的優(yōu)弧
上,則圓C
2的半徑的最小值是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知數(shù)列{an},對(duì)于任意n∈N*,有Sn=2n-1,則a12+a22+…+an2=( 。
A、(2n-1)2 |
B、(2n-1)2 |
C、(4n-1) |
D、(3n-1) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
執(zhí)行如圖的程序框圖,若輸出的結(jié)果是60,則輸入的P值是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
在二項(xiàng)式(x2-1)5的展開(kāi)式中,含x4的項(xiàng)的系數(shù)是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知函數(shù)f(x)=ex(x2+ax-a)(其中a是常數(shù))在點(diǎn)(1,f(1))處的切線斜率為4e,則a的值為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
在函數(shù)y=cos|x|、y=|tanx|、y=sin(2x+
)、y=cos(2x+
)中,最小正周期為π的函數(shù)的個(gè)數(shù)為( 。
A、1個(gè) | B、2個(gè) | C、3個(gè) | D、4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
設(shè)函數(shù)y=f(x)在(a,b)上的導(dǎo)函數(shù)為f′(x),f′(x)在(a,b)上的導(dǎo)函數(shù)為f″(x),若在(a,b)上,f″(x)<0恒成立,則稱函數(shù)f(x)在(a,b)上為“凸函數(shù)”.已知當(dāng)m≤2時(shí),y=f(x)=
x
3-
mx
2+2x+2在(-1,2)上是“凸函數(shù)”,則f(x)在(-1,2)上( 。
A、既沒(méi)有最大值,也沒(méi)有最小值 |
B、既有最大值,也有最小值 |
C、有最大值,沒(méi)有最小值 |
D、沒(méi)有最大值,有最小值 |
查看答案和解析>>