分析 設(shè)f(x)=x2+(a2-9)x+a2-5a+6,則由題意可得$\left\{\begin{array}{l}{f(0){=a}^{2}-5a+6<0}\\{f(2)={3a}^{2}-5a-8<0}\end{array}\right.$,由此求得a的范圍.
解答 解:設(shè)f(x)=x2+(a2-9)x+a2-5a+6,則由題意可得$\left\{\begin{array}{l}{f(0){=a}^{2}-5a+6<0}\\{f(2)={3a}^{2}-5a-8<0}\end{array}\right.$,
求得 2<a<$\frac{8}{3}$.
點評 本題主要考查一元二次方程根的分布與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{5}{3}$,$\frac{5}{2}$] | B. | (-∞,-$\frac{5}{3}$]∪[$\frac{5}{2}$,+∞) | C. | (-∞,-$\frac{5}{2}$]∪[$\frac{5}{3}$,+∞) | D. | [-$\frac{5}{2}$,$\frac{5}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,+∞) | B. | (-∞,0) | C. | (0,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com