【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的極坐標(biāo)方程和曲線的參數(shù)方程;

(2)若,直線與曲線交于兩點(diǎn),求的值.

【答案】1;為參數(shù));(2

【解析】

(1)先將直線的參數(shù)方程消去參數(shù)化為普通方程,再直角坐標(biāo)方程與極坐標(biāo)方程的互化公式,即求出直線的極坐標(biāo)方程;同樣由直角坐標(biāo)方程與極坐標(biāo)方程的互化公式,先將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,進(jìn)而可求出曲線的參數(shù)方程;

(2)求出直線的參數(shù)方程的標(biāo)準(zhǔn)形式,然后利用參數(shù)的幾何意義,即可求出的值.

(1)依題意,得直線,即,

所以直線的極坐標(biāo)方程為.

因?yàn)?/span>,則,即.

所以曲線的參數(shù)方程為(為參數(shù)).

(2)因?yàn)橹本經(jīng)過點(diǎn),

故直線的參數(shù)方程的標(biāo)準(zhǔn)形式為,代入,

可得,所以,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中e是自然對(duì)數(shù)的底數(shù),a,)在點(diǎn)處的切線方程是.

1)求函數(shù)的單調(diào)區(qū)間.

2)設(shè)函數(shù),若上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),是橢圓的左,右焦點(diǎn),橢圓上一點(diǎn)滿足軸,.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過的直線交橢圓兩點(diǎn),當(dāng)的內(nèi)切圓面積最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(II) 當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素?cái)?shù)猜想的一個(gè)弱化形式,此事引起了國(guó)際數(shù)學(xué)界的轟動(dòng)許多專家認(rèn)為這是數(shù)論研究中的一項(xiàng)重大突破世界主流媒體都對(duì)這項(xiàng)重要成果作了報(bào)道并給予了高度評(píng)價(jià),印度媒體甚至稱贊張益唐為中國(guó)的拉馬努金”.孿生素?cái)?shù)猜想是希爾伯特在1900年提出的23個(gè)問題之一,可以這樣描述:存在無窮多個(gè)素?cái)?shù),使得是素?cái)?shù),素?cái)?shù)對(duì)稱為孿生素?cái)?shù).在不超過20的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其中能夠組成孿生素?cái)?shù)的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,平面平面,且

是等邊三角形, .

(1)證明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】王老師在做折紙游戲,現(xiàn)有一張邊長(zhǎng)為1的正三角形紙片ABC,將點(diǎn)A翻折后恰好落在邊BC上的點(diǎn)F處,折痕為DE,設(shè)

1)求x、y滿足的關(guān)系式;

2)求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求的最小值;

2)若函數(shù)上存在極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)分別是橢圓的上、下頂點(diǎn),線段長(zhǎng)為,橢圓的離心率為

1)求該橢圓的方程;

2)已知過點(diǎn)的直線與橢圓交于兩點(diǎn),直線與直線交于點(diǎn)

①若直線的斜率為,求點(diǎn)的坐標(biāo);

②求證點(diǎn)在一條定直線上,并寫出該直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案