分析 由已知式子和正弦定理可得B=$\frac{π}{3}$,再由余弦定理可得ac≤16,即可求得a+c的最大值.
解答 解:∵在△ABC中$\frac{2a-c}$=$\frac{cosC}{cosB}$,
∴(2a-c)cosB=bcosC,
∴(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA,
約掉sinA可得cosB=$\frac{1}{2}$,即B=$\frac{π}{3}$,
由余弦定理可得16=a2+c2-2accosB=a2+c2-ac≥2ac-ac,
∴ac≤16,當且僅當a=c時取等號,
∴16=a2+c2-ac=(a+c)2-3ac,可得:(a+c)2=16+3ac≤64,解得a+c≤8,當且僅當a=c時取等號.
故答案為:8.
點評 本題考查解三角形,涉及正余弦定理和基本不等式以及三角形的面積公式,屬中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | 1 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1 | B. | f(x)=x,g(x)=2${\;}^{lo{g}_{2}x}$ | ||
C. | f(x)=x,g(x)=$\root{3}{{x}^{3}}$ | D. | f(x)=x,g(x)=$\sqrt{{x}^{2}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若a2+b2=0則a≠0且b≠0(a,b∈R) | B. | 若a=b≠0(a,b∈R),則a2+b2≠0 | ||
C. | 若a≠0且b≠0(a,b∈R),則a2+b2≠0 | D. | 若a≠0或b≠0(a,b∈R),則a2+b2≠0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | π | B. | $\frac{π}{2}$ | C. | $π或\frac{π}{2}$ | D. | 0或$\frac{π}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com