19.在△ABC中,角A,B,C的對邊分別為a,b,c,若$\frac{2a-c}$=$\frac{cosC}{cosB}$,b=4,則a+c的最大值為8.

分析 由已知式子和正弦定理可得B=$\frac{π}{3}$,再由余弦定理可得ac≤16,即可求得a+c的最大值.

解答 解:∵在△ABC中$\frac{2a-c}$=$\frac{cosC}{cosB}$,
∴(2a-c)cosB=bcosC,
∴(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA,
約掉sinA可得cosB=$\frac{1}{2}$,即B=$\frac{π}{3}$,
由余弦定理可得16=a2+c2-2accosB=a2+c2-ac≥2ac-ac,
∴ac≤16,當且僅當a=c時取等號,
∴16=a2+c2-ac=(a+c)2-3ac,可得:(a+c)2=16+3ac≤64,解得a+c≤8,當且僅當a=c時取等號.
故答案為:8.

點評 本題考查解三角形,涉及正余弦定理和基本不等式以及三角形的面積公式,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90°,且AB=4,SA=3.
(1)求證:平面SBC⊥平面SAB;
(2)若E、F分別為線段BC、SB上的一點(端點除外),當∠AFE=90°時,求$\frac{SF}{FB}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若命題“?x∈R,使得sinxcosx>m”是真命題,則m的值可以是(  )
A.-$\frac{1}{3}$B.1C.$\frac{\sqrt{3}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.不等式x2+2x-3≤0的解集為( 。
A.[-1,3]B.[-3,-1]C.[-3,1]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下列各組函數(shù)中,f(x)與g(x)是同一函數(shù)的是( 。
A.f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1B.f(x)=x,g(x)=2${\;}^{lo{g}_{2}x}$
C.f(x)=x,g(x)=$\root{3}{{x}^{3}}$D.f(x)=x,g(x)=$\sqrt{{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)y=$\frac{1}{\sqrt{x+1}}$的定義域是(-1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.命題:“若a2+b2=0(a,b∈R),則a=0且b=0”的逆否命題是(  )
A.若a2+b2=0則a≠0且b≠0(a,b∈R)B.若a=b≠0(a,b∈R),則a2+b2≠0
C.若a≠0且b≠0(a,b∈R),則a2+b2≠0D.若a≠0或b≠0(a,b∈R),則a2+b2≠0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設函數(shù)f(x)=sin2x+$\sqrt{3}cos2x$+$\frac{π}{6}$的圖象關于點(x0,y0)成中心對稱,且x0$∈(\frac{π}{2},π)$,則x0+y0=( 。
A.πB.$\frac{π}{2}$C.$π或\frac{π}{2}$D.0或$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.(2x-1)($\frac{1}{x}$+2x)6的展開式中含x7的項的系數(shù)是128.

查看答案和解析>>

同步練習冊答案