【題目】某景區(qū)欲建兩條圓形觀景步道(寬度忽略不計),如圖所示,已知(單位:米),要求圓M分別相切于點B,D,圓分別相切于點C,D

(1)若,求圓的半徑;(結果精確到0.1米)

(2)若觀景步道的造價分別為每米0.8千元與每米0.9千元,則當多大時,總造價最低?最低總造價是多少?(結果分別精確到0.1°和0.1千元)

【答案】(1)34.6米,16.1米;(2)263.8千元.

【解析】

(1)利用切線的性質(zhì)即可得出圓的半徑;

(2)設∠BAD=2α,則總造價y=0.82π60tanα+0.92π60tan(45°﹣α),化簡,令1+tanα=x換元,利用基本不等式得出最值.

(1)連結M1M2,AM1,AM2,

∵圓M1ABAD相切于B,D,圓M2AC,AD分別相切于點C,D,

M1,M2AD,∠M1ADBAD,∠M2AD,

∴M1B=ABtan∠M1AB=60×=20≈34.6(米),

∵tan,∴tan=2﹣,

同理可得:M2D=60×tan=60(2﹣)≈16.1(米).

(2)設∠BAD=2α(0<α<),由(1)可知圓M1的半徑為60tanα,圓M2的半徑為

60tan(45°﹣α),

設觀景步道總造價為y千元,則y=0.82π60tanα+0.92π60tan(45°﹣α)=96πtanα+108π,

設1+tanα=x,則tanα=x﹣1,且1<x<2.

y=96π(x﹣1)+108π()=12π(8x+﹣17)≥84π≈263.8,

當且僅當8xx時取等號,

x時,tanα=,∴α≈26.6°,2α≈53.2°.

∴當∠BAD為53.2°時,觀景步道造價最低,最低造價為263.8千元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是拋物線上任意一點,,且點為線段的中點.

(Ⅰ)求點的軌跡的方程;

(Ⅱ)若為點關于原點的對稱點,過的直線交曲線 兩點,直線交直線于點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)若,求的最小值;

(2)若,求的單調(diào)區(qū)間;

(3)試比較的大小,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線),點的焦點的右側,且的準線的距離是距離的3倍,經(jīng)過點的直線與拋物線交于不同的兩點,直線與直線交于點,經(jīng)過點且與直線垂直的直線軸于點.

1)求拋物線的方程和的坐標;

2)判斷直線與直線的位置關系,并說明理由;

3)橢圓的兩焦點為、,在橢圓外的拋物線上取一點,若、的斜率分別為、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln+ax﹣1(a≠0).

(I)求函數(shù)f(x)的單調(diào)區(qū)間;

(Ⅱ)已知g(x)+xf(x)=﹣x,若函數(shù)g(x)有兩個極值點x1,x2(x1<x2),求證:g(x1)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓)和雙曲線),記軸正半軸、軸負半軸的公共點分別為、,又記在第一、第四象限的公共點分別為、.

1)若,且恰為的左焦點,求的兩條漸近線的方程;

2)若,且,求實數(shù)的值;

3)若恰為的左焦點,求證:在軸上不存在這樣的點,使得.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓:的左、右點分別為在橢圓上,且

(1)求橢圓的方程;

(2)過點(1,0)作斜率為的直線交橢圓MN兩點,若求直線的方程;

(3)P、Q為橢圓上的兩個動點,為坐標原點,若直線的斜率之積為求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),

1)若,試討論函數(shù)的單調(diào)性;

2)若,試討論的零點的個數(shù);

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果數(shù)列對于任意,都有,其中為常數(shù),則稱數(shù)列是“間等差數(shù)列”,為“間公差”.若數(shù)列滿足,,.

(1)求證:數(shù)列是“間等差數(shù)列”,并求間公差;

(2)設為數(shù)列的前n項和,若的最小值為-153,求實數(shù)的取值范圍;

(3)類似地:非零數(shù)列對于任意,都有,其中為常數(shù),則稱數(shù)列是“間等比數(shù)列”,為“間公比”.已知數(shù)列中,滿足,試問數(shù)列是否為“間等比數(shù)列”,若是,求最大的整數(shù)使得對于任意,都有;若不是,說明理由.

查看答案和解析>>

同步練習冊答案