袋子中裝有除顏色外其他均相同的編號(hào)為a,b的2個(gè)黑球和編號(hào)為c,d,e的3個(gè)紅球,從中任意摸出2個(gè)球.
(1)寫(xiě)出所有不同的結(jié)果;
(2)求恰好摸出1個(gè)黑球和1個(gè)紅球的概率.
考點(diǎn):古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:(1)從五個(gè)球中摸兩個(gè)球,要從一個(gè)球入手,不重不漏的列舉出所有的事件,共有10個(gè),
(2)本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件在上一問(wèn)列舉出了所有的結(jié)果共有10個(gè),滿足條件的事件事件包含的基本事件為ac,ad,ae,bc,bd,be,共6個(gè)基本事件.根據(jù)古典概型概率公式得到結(jié)果.
解答: 解:(1)用樹(shù)狀圖表示所有的結(jié)果為

所以所有不同的結(jié)果是:
ab,ac,ad,ae,bc,bd,be,cd,ce,de.---------------------------------(5分)
(2)記“恰好摸出1個(gè)黑球和1個(gè)紅球”為事件A,
則事件A包含的基本事件為ac,ad,ae,bc,bd,be,共6個(gè)基本事件,----------(7分)
所以P(A)=
6
10
=0.6,
即恰好摸出1個(gè)黑球和1個(gè)紅球的概率為0.6.---------------(10分)
點(diǎn)評(píng):本題考查古典概型,考查用列舉法寫(xiě)出試驗(yàn)包含的所有事件,是一個(gè)古典概型的典型問(wèn)題,這種題目可以作為文科的高考題目的解答題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,0),
b
=(0,-1),
c
=k2
a
+k
b
(k≠0),
d
=
a
+
b
,如果
c
d
,那么( 。
A、k=1且
c
d
同向
B、k=1且
c
d
反向
C、k=-1且
c
d
同向
D、k=-1且
c
d
反向

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)log2
4
5
+log25等于( 。
A、
29
10
B、
10
29
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且滿足cos2B-cos(A+C)=0.
(1)求角B的大;
(2)若sinA=4sinC,△ABC的面積為
3
,求b邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列
1
1×4
,
1
4×7
,
1
7×10
,…,
1
(3n-2)(3n+1)
的前n項(xiàng)和為Sn
(1)計(jì)算S1,S2,S3,S4,根據(jù)計(jì)算結(jié)果,猜想Sn的表達(dá)式,并用數(shù)學(xué)歸納法進(jìn)行證明;
(2)試用其它方法求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在(
x
+
3x
n(其中n<15)的展開(kāi)式中:
(1)求二項(xiàng)式展開(kāi)式中各項(xiàng)系數(shù)之和;
(2)若展開(kāi)式中第9項(xiàng),第10項(xiàng),第11項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求n的值;
(3)在(2)的條件下寫(xiě)出它展開(kāi)式中的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過(guò)點(diǎn)(0,2),求它與曲線y=x3相切的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)用綜合法證明:a+b+c≥
ab
+
bc
+
ca
(a,b,c∈R+
(2)若下列方程:x2=4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,至少有一個(gè)方程有實(shí)根,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(2x+
3
n展開(kāi)式的二項(xiàng)式系數(shù)之和比(
x
+
1
2
4x
2n展開(kāi)式的二項(xiàng)式系數(shù)之和小240.
(1)求(
x
+
1
2
4x
2n展開(kāi)式中所有的x的有理項(xiàng);
(2)若(2x+
3
n=a0+a1x+a2x2+a3x3+…+anxn,求(a0+a2+a42-(a1+a32值.

查看答案和解析>>

同步練習(xí)冊(cè)答案