【題目】如圖有一景區(qū)的平面圖是一半圓形,其中直徑長為兩點在半圓弧上滿足,設(shè),現(xiàn)要在景區(qū)內(nèi)鋪設(shè)一條觀光通道,由 組成.

(1)用表示觀光通道的長,并求觀光通道的最大值;

(2)現(xiàn)要在景區(qū)內(nèi)綠化,其中在中種植鮮花,在中種植果樹,在扇形內(nèi)種植草坪,已知單位面積內(nèi)種植鮮花和種植果樹的利潤均是種植草坪利潤的 倍,則當(dāng)為何值時總利潤最大?

【答案】(1),;(2)當(dāng)時,總利潤取最大值.

【解析】

1)根據(jù)直徑的長度和角度計算出的長度,寫出的函數(shù)解析式,注意定義域,判斷取何值的時候有最大值并計算出最大值;

2)設(shè)出單位面積的利潤,將三個三角形的面積計算出來并求利潤和的表示,利用導(dǎo)數(shù)去計算函數(shù)的最值,確定取等號時的取值.

(1)作,垂足為,在直角三角形中,,

所以,

同理作,垂足為,,所以,如圖:

所以,

當(dāng)時,取最大值.

(2)設(shè)種植草坪單位面積的利潤為,

,

則總利潤,

,

因為,所以當(dāng)時,,所以遞增,遞減,

所以當(dāng)時總利潤取最大值,最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面為平行四邊形,側(cè)面底面,已知.

1)求證:;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是菱形, ,平面平面

在棱上運動.

(1)當(dāng)在何處時, 平面

(2)已知的中點, 交于點,當(dāng)平面時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓,點是圓內(nèi)一個定點,點是圓上任意一點,線段的垂直平分線和半徑相交于點.當(dāng)點在圓上運動時,點的軌跡為曲線.

1)求曲線的方程;

2)設(shè)過點的直線與曲線相交于兩點(點兩點之間).是否存在直線使得?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若上成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時,求曲線在點處的切線方程;

(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,點E,F分別是棱上的動點,且.當(dāng)三棱錐的體積取得最大值時,記二面角、平面角分別為,,則( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,,O的中點.

1)證明:平面;

2)若,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的一個焦點與拋物線的焦點重合,截拋物線的準(zhǔn)線所得弦長為1.

1)求橢圓的方程;

2)如圖所示,,,是橢圓的頂點,是橢圓上除頂點外的任意一點,直線軸于點,直線于點,設(shè)的斜率為的斜率為.證明:為定值.

查看答案和解析>>

同步練習(xí)冊答案