分析 (1)分類討論,根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可證明;
(2)利用數(shù)形結(jié)合法,分段討論,即可求出函數(shù)的零點(diǎn)的個(gè)數(shù).
解答 解:(1)當(dāng)a=1時(shí),且x≥1時(shí),f(x)=lnx-x+1,
∴0恒成立,
∴f(x)在[1,+∞)單調(diào)遞減,
當(dāng)x<1時(shí),f(x)=ex-1-x,
∴f′(x)=ex-1-1<0恒成立,
∴f(x)在(-∞,1)單調(diào)遞減,
綜上所述y=f(x)在R上單調(diào)遞減;
(2)當(dāng)x≥a時(shí),f(x)=lnx-ax+1=0,分別畫出y=lnx,與y=ax-1的圖象,如圖所示:
∵y=ax-1過定點(diǎn)(0,-1),
設(shè)直線y=ax-1與y=lnx的切點(diǎn)為(m,n),
∴k=f′(m)=$\frac{1}{m}$=$\frac{n+1}{m}$,f(m)=lnm=n
∴n=0,m=1,
由圖象可知,x≥a時(shí),且當(dāng)a>1時(shí),圖象無交點(diǎn),故f(x)無零點(diǎn),
當(dāng)x<a時(shí),f(x)=ex-1+(a-2)x,
分別畫出y=ex-1,與y=(2-a)x的圖象,如圖所示:
∵y=(2-a)x過定點(diǎn)(0,0),
由圖象可知,當(dāng)a>2時(shí),圖象有一個(gè)交點(diǎn),故f(x)有一個(gè)零點(diǎn),
當(dāng)1<a≤2時(shí),圖象無交點(diǎn),故f(x)無零點(diǎn),
故x<a時(shí),函數(shù)f(x)有一個(gè)零點(diǎn),
綜上所述,當(dāng)a>2時(shí),故f(x)有一個(gè)零點(diǎn),當(dāng)1<a≤2時(shí),故f(x)無零點(diǎn).
點(diǎn)評(píng) 本題考查了分段函數(shù)的應(yīng)用及函數(shù)的單調(diào)性的判定,同時(shí)考查了函數(shù)的零點(diǎn)與方程的根的關(guān)系應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{π}{3}$ | C. | π | D. | $\frac{π}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com