2.若函數(shù)y=f(x)的定義域為[1,2],則y=f(x+1)的定義域為[0,1].

分析 利用函數(shù)的定義域,列出不等式求解即可

解答 解:函數(shù)y=f(x)的定義域為[1,2],
可得:1≤x+1≤2,解得0≤x≤1,
則y=f(x+1)的定義域為:[0,1].

點(diǎn)評 本題考查函數(shù)的定義域的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.有下列四個命題:
p1:?x,y∈R,sin(x-y)=sinx-siny;
p2:已知a>0,b>0,若a+b=1,則$\frac{1}{a}+\frac{4}$的最大值是9;
p3:直線ax+y+2a-1=0過定點(diǎn)(0,-l);
p4:由曲線y=x2,y=x3圍成的封閉圖形面積為$\frac{1}{12}$
其中真命題是(  )
A.p1,p4B.p1p2C.p2,p4D.p3,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a,b,c滿足a<b<c且ac<0,則下列選項中一定成立的是( 。
A.ab<acB.c(a-b)>0C.ab2<cb2D.ac(2a-2c)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.過點(diǎn)(-1,2)且與直線y=$\frac{{\sqrt{3}}}{3}$x+2垂直的直線方程為( 。
A.y-2=$\frac{\sqrt{3}}{3}$(x+1)B.y-2=$\sqrt{3}$(x+1)C.y-2=-$\frac{\sqrt{3}}{3}$(x+1)D.y-2=-$\sqrt{3}$(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求函數(shù)f(x)=x2-2ax-2,x∈[-3,4],a∈R.
(Ⅰ)當(dāng)a=1時,函數(shù)f(x)的值域;
(Ⅱ)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在等差數(shù)列{an}中,a2+a5=19,S5=40,則a1=(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某種商品的包裝費(fèi)y(元)與商品的重量x(千克)有如下函數(shù)關(guān)系:y=ax2+bx+64,其中x>0,當(dāng)x=1千克時,y=52元,當(dāng)x=6.5千克時,y取最小值
(1)若要使商品的包裝費(fèi)低于28元,求商品重量x的取值范圍
(2)當(dāng)x取何值時,平均每千克的包裝費(fèi)P最低,并求出P的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.等腰直角三角形的直角邊長為1,則繞斜邊旋轉(zhuǎn)一周所形成的幾何體的體積為$\frac{{\sqrt{2}}}{6}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1nx-ax+1,(x≥a)}\\{{e}^{x-1}+(a-2)x,(x<a)}\end{array}\right.$(a>0)
(1)若a=1,證明:y=f(x)在R上單調(diào)遞減;
(2)當(dāng)a>1時,討論f(x)零點(diǎn)的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案