20.在平行六面體ABCD-A1B1C1D1中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,試用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示向量$\overrightarrow{A{C}_{1}}$,$\overrightarrow{B{D}_{1}}$,$\overrightarrow{D{B}_{1}}$.

分析 利用平行六面體的性質(zhì)與向量的三角形法則即可得出.

解答 解:$\overrightarrow{A{C}_{1}}$=$\overrightarrow{AC}+\overrightarrow{C{C}_{1}}$=$\overrightarrow{AB}+\overrightarrow{AD}$+$\overrightarrow{A{A}_{1}}$=$\overrightarrow{a}+\overrightarrow+\overrightarrow{c}$;
$\overrightarrow{B{D}_{1}}$=$\overrightarrow{BD}+\overrightarrow{D{D}_{1}}$=$\overrightarrow{BA}+\overrightarrow{BC}$+$\overrightarrow{A{A}_{1}}$=-$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$;
$\overrightarrow{D{B}_{1}}$=$\overrightarrow{DB}+\overrightarrow{B{B}_{1}}$=$\overrightarrow{DA}+\overrightarrow{DC}$+$\overrightarrow{A{A}_{1}}$=$-\overrightarrow$+$\overrightarrow{a}$+$\overrightarrow{c}$.

點(diǎn)評(píng) 本題考查了平行六面體的性質(zhì)與向量的三角形法則,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.過(guò)點(diǎn)(-1,2)且與直線y=$\frac{{\sqrt{3}}}{3}$x+2垂直的直線方程為( 。
A.y-2=$\frac{\sqrt{3}}{3}$(x+1)B.y-2=$\sqrt{3}$(x+1)C.y-2=-$\frac{\sqrt{3}}{3}$(x+1)D.y-2=-$\sqrt{3}$(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.等腰直角三角形的直角邊長(zhǎng)為1,則繞斜邊旋轉(zhuǎn)一周所形成的幾何體的體積為$\frac{{\sqrt{2}}}{6}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在矩形ABCD中,已知AB=1,AD=$\sqrt{3}$,若將△ABD沿BD所在直線翻折,使得二面角A-BD-C的大小為60°,則AD與平面BCD所成角的正弦值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.曲線f(x)=$\frac{1}{2}$x2在點(diǎn)(1,$\frac{1}{2}$)處的切線方程為2x-2y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$,函數(shù)g(x)=b-f(2-x),其中b∈R,若函數(shù)y=f(x)-g(x)恰好有四個(gè)零點(diǎn),則b的取值范圍是($\frac{7}{4}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1nx-ax+1,(x≥a)}\\{{e}^{x-1}+(a-2)x,(x<a)}\end{array}\right.$(a>0)
(1)若a=1,證明:y=f(x)在R上單調(diào)遞減;
(2)當(dāng)a>1時(shí),討論f(x)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.求法向量為(1,-2)且與圓x2+y2-2y-4=0相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知a>0,b>0,2a+3b=6,則$\frac{3}{a}$+$\frac{2}$的最小值為4.

查看答案和解析>>

同步練習(xí)冊(cè)答案