18.若函數(shù)y=f(x)與y=x${\;}^{\frac{1}{2}}$的圖象關(guān)于直線x=1對稱,則f(x)=$\sqrt{2-x}$.

分析 設(shè)P(x,y)為f(x)上的點(diǎn),求出P關(guān)于直線x=1的對稱點(diǎn)P′,代入y=x${\;}^{\frac{1}{2}}$化簡即可得出答案.

解答 解:P(x,y)為y=f(x)圖象上任意一點(diǎn),
則P關(guān)于直線x=1的對稱點(diǎn)為P′(2-x,y),
∴y=$\sqrt{2-x}$,∴f(x)=$\sqrt{2-x}$.
故答案為:$\sqrt{2-x}$.

點(diǎn)評 本題考查了函數(shù)解析式的求解,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=-($\frac{1}{2}$)|x|,x∈(-4,4],則函數(shù)f(x)為(  )
A.奇函數(shù)B.偶函數(shù)C.非奇非偶函數(shù)D.單調(diào)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知橢圓$\frac{{x}^{2}}{49}$+$\frac{{y}^{2}}{24}$=1的左、右焦點(diǎn)分別為F1、F2,點(diǎn)A在橢圓上,且|AF2|=6,則△AF1F2的面積是24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.△ABC中,A(m,2)、B(-3,-1)、C(5,1),若BC中點(diǎn)M到直線AB的距離大于M到AC的距離,則實(shí)數(shù)m的取值范圍為( 。
A.(-∞,$\frac{1}{2}}$)B.(-$\frac{1}{2},\frac{1}{2}}$)C.(-∞,0)D.($\frac{1}{2},+∞}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知△ABC的三個(gè)內(nèi)角A,B,C所對的邊分別為a,b,c,A是銳角,且$\sqrt{3}$b=2asinB,若a=2,則△ABC的面積的最大值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.2$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.計(jì)算:2${\;}^{3+{{log}_2}5}}$=40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.實(shí)數(shù)m取何值時(shí),復(fù)數(shù)z=m2(1+i)-(m+i)
(1)是實(shí)數(shù);
(2)是純虛數(shù);
(3)對應(yīng)的點(diǎn)位于復(fù)平面的第一象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=3|x|-3-x
(1)若f(x)=4,求x的值;
(2)若3t•f(2t)+m•f(t)≥0對于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,對一切正整數(shù)n,點(diǎn)(n,Sn)都在函數(shù)f(x)=2x+2-4的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an•log2an,求數(shù)列{bn}的前n項(xiàng)的和Tn;
(3)求證:$\frac{{a}_{1}-1}{{a}_{2}-1}$+$\frac{{a}_{2}-1}{{a}_{3}-1}$+$\frac{{a}_{3}-1}{{a}_{4}-1}$+…+$\frac{{a}_{n}-1}{{a}_{n+1}-1}$<$\frac{n}{2}$.

查看答案和解析>>

同步練習(xí)冊答案