13.已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,A是銳角,且$\sqrt{3}$b=2asinB,若a=2,則△ABC的面積的最大值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.2$\sqrt{3}$D.$\sqrt{6}$

分析 根據(jù)正弦定理,將已知等式化簡(jiǎn)可得sinA=$\frac{\sqrt{3}}{2}$,結(jié)合A為銳角,即可得解A的值,利用余弦定理、基本不等式的性質(zhì)、三角形的面積計(jì)算公式即可得出.

解答 (本題滿分為14分)
解:∵$\sqrt{3}$b=2asinB,
∴由正弦定理,得:$\sqrt{3}$sinB=2sinAsinB,
∵B為三角形內(nèi)角,可得sinB>0,…(3分)
∴2sinA=$\sqrt{3}$,得到sinA=$\frac{\sqrt{3}}{2}$,…(5分)
∵A為銳角,
∴A=$\frac{π}{3}$.
由余弦定理可得:a2=b2+c2-2bccosA,可得:4=b2+c2-bc,
∴4≥2bc-bc=bc,當(dāng)且僅當(dāng)b=c時(shí)取等號(hào).
∴S△ABC=$\frac{1}{2}$bcsinA≤$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
∴△ABC的面積的最大值是$\sqrt{3}$.…(14分)
故選:B.

點(diǎn)評(píng) 本題給出三角形的邊角關(guān)系,求A的大小,同時(shí)考查余弦定理、基本不等式的性質(zhì)、三角形的面積計(jì)算公式,考查了運(yùn)算求解能力和邏輯思維能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.無(wú)論k為何值時(shí),直線(k+2)x+(1-k)y-4k-5=0都恒過(guò)定點(diǎn)P.求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在一次隨機(jī)試驗(yàn)中,彼此互斥的事件A,B,C,D的概率分別是0.2,0.1,0.3,0.4,則下列說(shuō)法正確的是( 。
A.A+B與C是互斥事件,也是對(duì)立事件
B.B+C與D是互斥事件,也是對(duì)立事件
C.A+C與B+D是互斥事件,但不是對(duì)立事件
D.A與B+C+D是互斥事件,也是對(duì)立事件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.曲線y=$\frac{lnx-2x}{x}$在點(diǎn)(1,f(1))處的切線方程為( 。
A.y=x-3B.y=-x+1C.y=2x-2D.y=-2x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.以等腰直角三角形ABC斜邊BC上的高AD為折痕,將△ABC折成二面角C-AD-B為多大時(shí),在折成的圖形中,△ABC為等邊三角形( 。
A.30°B.60°C.90°D.45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)y=f(x)與y=x${\;}^{\frac{1}{2}}$的圖象關(guān)于直線x=1對(duì)稱,則f(x)=$\sqrt{2-x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^{-x}}-0.5,x≤1\\{log_{81}}x,x>1\end{array}$,則不等式f(x)>$\frac{1}{2}$的解集為( 。
A.(-∞,1)B.(-∞,0)∪(9,+∞)C.(9,+∞)D.(-∞,1)∪(9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知圓C:x2+y2-8y+12=0,直線l:ax+y+2a=0
(1)當(dāng)直線l與圓C相切時(shí),求a的值;
(2)當(dāng)a=-1時(shí),直線l與圓C相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列函數(shù)中,在區(qū)間(0,+∞)上是減函數(shù)的是( 。
A.y=-x2+2xB.y=x3C.y=2-x+1D.y=x

查看答案和解析>>

同步練習(xí)冊(cè)答案