【題目】隨著我國經(jīng)濟的發(fā)展,居民的儲蓄存款逐年增長,設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(單位:億元)的數(shù)據(jù)如下:

(1)求關(guān)于的線性回歸方程;

(2)2018年城鄉(xiāng)居民儲蓄存款前五名中,有三男和兩女.現(xiàn)從這5人中隨機選出2人參加某訪談節(jié)目,求選中的2人性別不同的概率.

附:回歸直線的斜率和截距的最小二乘估計公式分別為: ,.

【答案】(1) .(2) .

【解析】

(1)由題意利用線性回歸方程的系數(shù)公式求得的值即可確定線性回歸方程;

(2)由題意列出所有的基本事件個數(shù),然后找到滿足題意的事件個數(shù),最后利用古典概型計算公式可得相應(yīng)的概率值.

1,,,

,

∴所求回歸方程為:

2)設(shè),,代表三男,,代表兩女,從5人中任選2人的基本事件為

, ,,,,,共有10種,選中的2人性別不同的事件為

,,,共有6種,故所求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的四個頂點圍成的菱形的面積為,橢圓的一個焦點為圓的圓心.

(1)求橢圓的方程;

(2)M,N為橢圓上的兩個動點,直線OM,ON的斜率分別為,當(dāng)時,△MON的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)判斷并證明的奇偶性.

2)證明內(nèi)單調(diào)遞減.

3,若對任意的都有,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點與拋物線的焦點相同,A為橢圓C的右頂點,以A為圓心的圓與直線相交于P, 兩點,且

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程和圓A的方程;

(Ⅱ)不過原點的直線與橢圓C交于M、N兩點,已知OM,直線,ON的斜率成等比數(shù)列,記以O(shè)M、ON為直徑的圓的面積分別為S1、S2,試探究的值是否為定值,若是,求出此值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個口袋內(nèi)有個不同的紅球,個不同的白球,

(1)從中任取個球,紅球的個數(shù)不比白球少的取法有多少種?

(2)若取一個紅球記分,取一個白球記分,從中任取個球,使總分不少于分的取法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校舉行演講比賽,10位評委對兩位選手的評分如下:

7.5 7.5 7.8 7.8 8.0 8.0 8.2 8.3 8.4 9.9

7.5 7.8 7.8 7.8 8.0 8.0 8.3 8.3 8.5 8.5

選手的最終得分為去掉一個最低分和一個最高分之后,剩下8個評分的平均數(shù).那么,這兩個選手的最后得分是多少?若直接用10位評委評分的平均數(shù)作為選手的得分,兩位選手的排名有變化嗎?你認為哪種評分辦法更好?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn),當(dāng)圓內(nèi)接多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設(shè)計的程序框圖,則輸出的n值為 (參考數(shù)據(jù):,,)

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線的左焦點作圓的切線,切點為,延長交拋物線于點,若是線段的中點,則雙曲線的離心率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計ABO血型具有民族和地區(qū)差異.在我國H省調(diào)查了30488人,四種血型的人數(shù)如下:

血型

A

B

O

AB

人數(shù)/

7704

10765

8970

3049

頻率

1)計算H省各種血型的頻率并填表(精確到0.001);

2)如果從H省任意調(diào)查一個人的血型,那么他是O型血的概率大約是多少?

查看答案和解析>>

同步練習(xí)冊答案