12.如圖,三棱錐P-ABC中,PB⊥平面ABC,PB=BC=CA=4,∠BCA=90°,E為PC的中點(diǎn).
(1)求證:BE⊥平面PAC;
(2)求二面角E-AB-C的正弦值.

分析 (1)推導(dǎo)出AC⊥AB,AC⊥CB,從而AC⊥平面PBC,進(jìn)而AC⊥BE,再由BE⊥PC,能證明BE⊥平面PAC.
(2)過E作EF⊥BC,F(xiàn)為垂足,則EF∥PB,過F作FM⊥AB,M為垂足,連結(jié)EM,則∠EMF為二面角E-AB-C的平面角,由此能求出二面角E-AB-C的正弦值.

解答 證明:(1)∵PB⊥平面ABC,BC?平面ABC,
∴AC⊥AB,
又∵∠BCA=90°,∴AC⊥CB,
∵CB?平面PBC,PB?平面PBC,PB∩CB=B,
AC⊥平面PBC,
又BE?平面PBC,
∴AC⊥BE,
∵E為PC中點(diǎn),且PB=PC,∴BE⊥PC,
PC?平面PAC,AC?平面PBC,PC∩AC=C,
∴BE⊥平面PAC.
(2)過E作EF⊥BC,F(xiàn)為垂足,則EF∥PB,
∵PB⊥平面ABC,∴EF⊥平面ABC,
∵AB?面ABC,∴EF⊥AB,
過F作FM⊥AB,M為垂足,
連結(jié)EM,∵EF∩FM=F,∴AB⊥面EFM,
∵EM?面EFM,∴AB⊥EM,
∴∠EMF為二面角E-AB-C的平面角,
在Rt△EFM中,EF=$\frac{1}{2}PB=2$,F(xiàn)M=FBsin∠B=$\sqrt{2}$,
EM=$\sqrt{E{F}^{2}+F{M}^{2}}$=$\sqrt{6}$,
sin$∠EMF=\frac{EF}{EM}$=$\frac{2}{\sqrt{6}}$=$\frac{\sqrt{6}}{3}$,
∴二面角E-AB-C的正弦值為$\frac{\sqrt{6}}{3}$.

點(diǎn)評(píng) 本題考查線面垂直的證明,考查二面角的正弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.用數(shù)學(xué)歸納法證明等式1+2+3+…+2n=$\frac{{{2^n}({{2^n}+1})}}{2}$(n≥2,n∈N*)的過程中,第一步歸納基礎(chǔ),等式左邊的式子是(  )
A.1+2B.1+2+3+4C.1+2+3D.1+2+3+4+5+6+7+8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.給出下列命題:
①復(fù)數(shù)z=$\frac{3-ai}{i}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第三象限是a≥0的充分不必要條件;
②設(shè)α,β為兩個(gè)不同的平面,直線l?α,則“l(fā)⊥β”是“α⊥β”成立的充要條件;
③$a={log_{\frac{1}{3}}}2$,b=log${\;}_{\frac{1}{2}}$3,$c={(\frac{1}{3})^{0.5}}$大小關(guān)系是a<b<c;
④已知定點(diǎn)A(1,1),拋物線y2=4x的焦點(diǎn)為F,點(diǎn)P為拋物線上任意一點(diǎn),則|PA|+|PF|的最小值為2;以上命題正確的是①④(請(qǐng)把正確命題的序號(hào)都寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在三棱錐S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC且分別交AC、SC于D、E,又SA=AB,SB=BC,
(1)求證:BD⊥平面SAC;
(2)求二面角E-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AB=AC=1,點(diǎn)P是棱BB1上一點(diǎn),滿足$\overrightarrow{BP}=λ\overrightarrow{B{B_1}}$(0≤λ≤1).
(1)若λ=$\frac{1}{3}$,求直線PC與平面A1BC所成角的正弦值;
(2)若二面角P-A1C-B的正弦值為$\frac{2}{3}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在底面為平行四邊形的四棱錐O-ABCD中,BC⊥平面OAB,E為OB中點(diǎn),OA=AD=2AB=2,OB=$\sqrt{5}$.
(1)求證:平面OAD⊥平面ABCD;
(2)求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知長方體AC1中,棱AB=BC=1,棱BB1=2,點(diǎn)E為棱BB1上的點(diǎn).
(Ⅰ)求證:AC⊥BD1;
(Ⅱ)求證:平面D1DB⊥平面ACE;
(Ⅲ)BE=$\frac{1}{4}$BB1,求平面ACE與平面ACD1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在一圓柱中挖去一圓錐所得的機(jī)械部件的三視圖如圖所示,則此機(jī)械部件的表面積為( 。
A.(7+$\sqrt{2}$)πB.(8+$\sqrt{2}$)πC.$\frac{22π}{7}$D.(1+$\sqrt{2}$)π+6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某電子設(shè)備的鎖屏圖案設(shè)計(jì)的操作界面如圖1所示,屏幕解鎖圖案的設(shè)計(jì)規(guī)則如下:從九個(gè)點(diǎn)中選擇一個(gè)點(diǎn)為起點(diǎn),手指依次劃過某些點(diǎn)(點(diǎn)的個(gè)數(shù)在1到9個(gè)之間)就形成了一個(gè)線路圖(線上的點(diǎn)只有首次被劃到時(shí)才起到確定線路的作用,即第二次劃的點(diǎn)不會(huì)成為確定折線的點(diǎn),如圖1的點(diǎn)P,線段AB盡管過P,但是由A,B兩點(diǎn)確定的),這個(gè)線路圖就形成一個(gè)屏幕解鎖圖案,則下面所給線路圖2中可以成為屏幕解鎖圖案的序號(hào)是①②.

查看答案和解析>>

同步練習(xí)冊(cè)答案