分析 (1)推導(dǎo)出AC⊥AB,AC⊥CB,從而AC⊥平面PBC,進(jìn)而AC⊥BE,再由BE⊥PC,能證明BE⊥平面PAC.
(2)過E作EF⊥BC,F(xiàn)為垂足,則EF∥PB,過F作FM⊥AB,M為垂足,連結(jié)EM,則∠EMF為二面角E-AB-C的平面角,由此能求出二面角E-AB-C的正弦值.
解答 證明:(1)∵PB⊥平面ABC,BC?平面ABC,
∴AC⊥AB,
又∵∠BCA=90°,∴AC⊥CB,
∵CB?平面PBC,PB?平面PBC,PB∩CB=B,
AC⊥平面PBC,
又BE?平面PBC,
∴AC⊥BE,
∵E為PC中點(diǎn),且PB=PC,∴BE⊥PC,
PC?平面PAC,AC?平面PBC,PC∩AC=C,
∴BE⊥平面PAC.
(2)過E作EF⊥BC,F(xiàn)為垂足,則EF∥PB,
∵PB⊥平面ABC,∴EF⊥平面ABC,
∵AB?面ABC,∴EF⊥AB,
過F作FM⊥AB,M為垂足,
連結(jié)EM,∵EF∩FM=F,∴AB⊥面EFM,
∵EM?面EFM,∴AB⊥EM,
∴∠EMF為二面角E-AB-C的平面角,
在Rt△EFM中,EF=$\frac{1}{2}PB=2$,F(xiàn)M=FBsin∠B=$\sqrt{2}$,
EM=$\sqrt{E{F}^{2}+F{M}^{2}}$=$\sqrt{6}$,
sin$∠EMF=\frac{EF}{EM}$=$\frac{2}{\sqrt{6}}$=$\frac{\sqrt{6}}{3}$,
∴二面角E-AB-C的正弦值為$\frac{\sqrt{6}}{3}$.
點(diǎn)評(píng) 本題考查線面垂直的證明,考查二面角的正弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+2 | B. | 1+2+3+4 | C. | 1+2+3 | D. | 1+2+3+4+5+6+7+8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (7+$\sqrt{2}$)π | B. | (8+$\sqrt{2}$)π | C. | $\frac{22π}{7}$ | D. | (1+$\sqrt{2}$)π+6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com