A. | 直角三角形 | B. | 銳角三角形 | C. | 鈍角三角形 | D. | 不能確定 |
分析 根據(jù)題意,結(jié)合正弦定理可得a:b:c=2:3:4,再由余弦定理算出最大角C的余弦等于-$\frac{1}{4}$,從而得到△ABC是鈍角三角形,得到本題答案.
解答 解:∵sinA:sinB:sinC=2:3:4,
∴根據(jù)正弦定理,得a:b:c=2:3:4,
設(shè)a=2x,b=3x,c=4x,由余弦定理得:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{4{x}^{2}+9{x}^{2}-16{x}^{2}}{2×2x×3x}$=-$\frac{1}{4}$
∵C是三角形內(nèi)角,得C∈(0,π),
∴由cosC=-$\frac{1}{4}$<0,得C為鈍角
因此,△ABC是鈍角三角形.
故選:C.
點(diǎn)評(píng) 本題給出三角形個(gè)角正弦的比值,判斷三角形的形狀,著重考查了利用正、余弦定理解三角形的知識(shí),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $|\overrightarrow a|=\sqrt{{{(\overrightarrow a)}^2}}$ | B. | λ($\overrightarrow a$•$\overrightarrow b$)=$\overrightarrow a$•(λ$\overrightarrow b$) | C. | ($\overrightarrow a$-$\overrightarrow b$)$\overrightarrow c$=$\overrightarrow a$•$\overrightarrow c$-$\overrightarrow b$•$\overrightarrow c$ | D. | $\overrightarrow a$與$\overrightarrow b$共線?$\overrightarrow a$•$\overrightarrow b$=$|{\overrightarrow a}||{\overrightarrow b}|$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com