5.設:函數(shù)f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,計算:f($\frac{1}{2008}$)+f($\frac{2}{2008}$)+f($\frac{3}{2008}$)+…+f($\frac{2007}{2008}$)+f($\frac{2008}{2008}$)的值.

分析 根據(jù)題意,得出[f($\frac{1}{2008}$)+f($\frac{2007}{2008}$)]=[f($\frac{2}{2008}$)+f($\frac{2006}{2008}$)]=…=1,再計算f($\frac{1004}{2008}$)與f($\frac{2008}{2008}$)的值即可.

解答 解:函數(shù)f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$=1-$\frac{2}{{4}^{x}+2}$,
∴f($\frac{1}{n}$)+f($\frac{n-1}{n}$)=1;
f($\frac{1}{2008}$)+f($\frac{2}{2008}$)+f($\frac{3}{2008}$)+…+f($\frac{2007}{2008}$)+f($\frac{2008}{2008}$)
=[f($\frac{1}{2008}$)+f($\frac{2007}{2008}$)]+[f($\frac{2}{2008}$)+f($\frac{2006}{2008}$)]+…+f($\frac{1004}{2008}$)+f($\frac{2008}{2008}$)
=1+1+…+$\frac{1}{2}$+$\frac{2}{3}$
=1004$\frac{1}{6}$
=$\frac{6025}{6}$.

點評 本題考查了求函數(shù)值的應用問題,也考查了尋找規(guī)律的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.過點A(2,1)做曲線f(x)=x3-3x的切線,最多有(  )
A.3條B.2條C.1條D.0條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.“低碳生活,綠色出行”已成為普遍現(xiàn)象,某城市為了響應這一政策,節(jié)能減排,實施了一系列改革.為了了解改革的成效,現(xiàn)對1000名市民進行調查,得到如下統(tǒng)計表:
 持支持態(tài)度 持反對態(tài)度 持一般態(tài)度
 男性 500 150 50
 女性 200 5050
若從持支持態(tài)度的人中按分層抽樣選取14人,再從14人中隨機地選取3人去參加“改革建議座談會”,則這3人中恰有1名是女性的概率為(  )
A.$\frac{42}{91}$B.$\frac{45}{91}$C.$\frac{3}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.寫出下列函數(shù)的值域:
(1)y=log${\;}_{\frac{1}{3}}$(x2-4x+7):(-∞,-1];
(2)y=log${\;}_{\frac{1}{2}}$$\frac{1}{{x}^{2}-2x+5}$:[2,+∞);
(3)y=log${\;}_{\frac{1}{2}}$$\sqrt{3-2x-{x}^{2}}$:[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知向量$\overrightarrow{m}$=(sinx,-1),$\overrightarrow{n}$=($\sqrt{3}$cosx,-$\frac{1}{2}$),函數(shù)f(x)=($\overrightarrow{m}$$+\overrightarrow{n}$)$•\overrightarrow{m}$,又a,b,c分別是△ABC的三個內角A,B,C的對邊,且f(A)=3.
(1)求角A的大。
(2)若a=$\sqrt{3}$,且△ABC為銳角三角形,求b-$\frac{1}{2}$c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知含有3個元素的集合{a,$\frac{a}$,1}={a2,a+b,0},則a2015+b2015=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x),g(x)都是R上的奇函數(shù),且F(x)=f(x)+3g(x)+5,若F(a)=b,則F(-a)=( 。
A.-b+10B.-b+5C.b-5D.b+5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}\right.$,則目標函數(shù)z=6x+y的最大值為( 。
A.2B.$\frac{7}{3}$C.6D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若函數(shù)f(x)對于x∈R都有f(1-x)=f(1+x)和f(1-x)+f(3+x)=0成立,當x∈[0,1]時,f(x)=x,則f(2016)=0.

查看答案和解析>>

同步練習冊答案