18.定義集合運(yùn)算:A?B={z|z=xy,x∈A,y∈B},設(shè)A={1,2,3},B={0,4,5},則集合A?B的所有元素之和為54.

分析 先計(jì)算集合A?B,再計(jì)算其元素之和

解答 解:∵A={1,2,3},B={0,4,5},
∴A?B={z|z=xy,x∈A,y∈B}={0,4,8,12,5,10,15},
故集合A?B的所有元素之和為54,
故答案為:54

點(diǎn)評(píng) 本題主要考查了元素與集合關(guān)系的判斷,只需理解集合A?B的定義即可,較簡(jiǎn)單

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=x4+ax,若曲線y=f(x)在x=1處的切線斜率為1,那么a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)全集U=R,A={x|x≤2,x∈R},B={1,2,3,4},則B∩∁UA=( 。
A.{4}B.{3,4}C.{2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=$\sqrt{2-3x}$-(x+1)0的定義域?yàn)椋ā 。?table class="qanwser">A.(-1,$\frac{2}{3}$]B.(-1,$\frac{2}{3}$)C.(-∞,-1)∪(-1,$\frac{2}{3}$]D.[$\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)判斷并證明函數(shù)f(x)=x+$\frac{4}{x}$在區(qū)間(2,+∞)上的單調(diào)性;
(2)試寫出f(x)=x+$\frac{a}{x}$(a>0)在(0,+∞)上的單調(diào)區(qū)間(不用證明);
(3)根據(jù)(2)的結(jié)論,求f(x)=x+$\frac{16}{x}$在區(qū)間[1,8]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某學(xué)校有老師200人,男學(xué)生1200人,女學(xué)生1000人,現(xiàn)用分層抽樣的方法從全體師生中抽取一個(gè)容量為n的樣本,已知女學(xué)生一共抽取了80人,則n的值是( 。
A.193B.192C.191D.190

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右焦點(diǎn)分別為F1,F(xiàn)2,直線l:y=x+1過E的左焦點(diǎn)F1,交E于A,B兩點(diǎn),線段AB的中點(diǎn)M的橫坐標(biāo)為-$\frac{4}{7}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)將直線l:y=x+1,繞點(diǎn)F旋轉(zhuǎn)至某一位置得直線l′,l′交E于C,D兩點(diǎn),E上是否存在一點(diǎn)N.滿足$\overline{{F}_{2}C}$+$\overline{{F}_{2}D}$=$\overline{{F}_{2}N}$?若存在,求直線l′的斜率;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在等比數(shù)列{an}中,如果公比q>1,那么等比數(shù)列{an}是( 。
A.遞增數(shù)列B.遞減數(shù)列
C.常數(shù)列D.遞增數(shù)列或遞減數(shù)列都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若直線a∥平面α,直線b⊥平面α,則a與b不可能(  )
A.相交B.異面C.平行D.垂直

查看答案和解析>>

同步練習(xí)冊(cè)答案