8.設(shè)函數(shù)f(x)=x4+ax,若曲線y=f(x)在x=1處的切線斜率為1,那么a=-3.

分析 求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,解方程可得a=-3.

解答 解:函數(shù)f(x)=x4+ax的導(dǎo)數(shù)為f′(x)=4x3+a,
即有在x=1處的切線斜率為4+a=1,
解得a=-3.
故答案為:-3.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義,以及運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知0<x<2時(shí),f(x)=2x+x,且f(x)=f(4-x),則當(dāng)2<x<4時(shí),f(x)=24-x+4-x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知:函數(shù)f(x)=sin2x+$\sqrt{3}cosxcos(\frac{π}{2}-x)$.
(Ⅰ)求函數(shù)f(x)的對稱中心及對稱軸方程;
(Ⅱ)當(dāng)$x∈[0,\frac{7π}{12}]$時(shí),求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知奇函數(shù)f(x)滿足x>0時(shí),f(x)=cos2x,則$f({-\frac{π}{3}})$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)偶函數(shù)f(x)滿足f(x)=x3-8(x≥0),則{x|f(x-2)>0}=( 。
A.{x|x<-2或x>4}B.{x|x<0或x>4}C.{ x|x<0或x>6}D.{ x|x<-2或x>5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知等差數(shù)列{an}滿足a3+a7=10,則a4+a5+a6=( 。
A.5B.15C.25D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=$\frac{{{2^x}+a}}{{{2^x}+1}}$為奇函數(shù),g(x)=$\left\{\begin{array}{l}alnx,x>0\\{e^{ax}},x≤0\end{array}$,則不等式g(x)>1的解集為(  )
A.(-∞,e-1B.(-∞,0)∪(0,e)C.(e,+∞)D.(-∞,0)∪(0,e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知直線l與曲線$y=-\frac{1}{x}$和曲線y=lnx均相切,則這樣的直線l的條數(shù)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.定義集合運(yùn)算:A?B={z|z=xy,x∈A,y∈B},設(shè)A={1,2,3},B={0,4,5},則集合A?B的所有元素之和為54.

查看答案和解析>>

同步練習(xí)冊答案