3.無論k為何值時,直線(k+2)x+(1-k)y-4k-5=0都恒過定點P.求P點的坐標.

分析 所給的直線即即k(x-y-4)+(2x+y-5)=0,它一定經(jīng)過直線x-y-4=0和直線2x+y-5=0的交點P,解方程組求得點P的坐標.

解答 解:直線(k+2)x+(1-k)y-4k-5=0,
即k(x-y-4)+(2x+y-5)=0,
它一定經(jīng)過直線 x-y-4=0和直線2x+y-5=0的交點P,
由$\left\{\begin{array}{l}{x-y-4=0}\\{2x+y-5=0}\end{array}\right.$,
求得$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$,
可得點P的坐標為(3,-1).

點評 本題主要考查直線系方程,直線經(jīng)過定點問題,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點為F(-c,0),離心率為$\frac{{\sqrt{3}}}{3}$,點M在橢圓上,直線FM的斜率為$\frac{{\sqrt{3}}}{3}$,直線FM被圓x2+y2=$\frac{1}{2}$截得的線段的長為c.
(1)求橢圓的方程;
(2)設動點P在橢圓上,若直線FP的斜率大于$\sqrt{2}$,求直線OP(O為原點)的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下列函數(shù)既是奇函數(shù),又在(0,+∞)上單調(diào)遞增的是( 。
A.y=-x2B.y=x3C.y=log2xD.y=-3-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.點(2,$\frac{π}{3}$)的平面直角坐標是(  )
A.$(2,\sqrt{3})$B.$(1,\sqrt{3})$C.$(\sqrt{3},1)$D.$(\sqrt{3},2)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.過兩直線x-2y+2=0和2x+y-1=0的交點且斜率為1的直線方程為( 。
A.x-y-1=0B.x+y-1=0C.x-y+1=0D.x+y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=-($\frac{1}{2}$)|x|,x∈(-4,4],則函數(shù)f(x)為(  )
A.奇函數(shù)B.偶函數(shù)C.非奇非偶函數(shù)D.單調(diào)函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若函數(shù)f(x)=ax3+(a-2)x2+$\frac{1}{3}$x+b存在極小值,則實數(shù)a的取值范圍為a>4或a<1且a≠0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知直線l過點P(2,1),且傾斜角θ=45o
(1)寫出直線的參數(shù)方程;
(2)求直線l與直線y=2x的交點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,A是銳角,且$\sqrt{3}$b=2asinB,若a=2,則△ABC的面積的最大值為(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.2$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

同步練習冊答案