如圖,AB為⊙O的直徑,直線CD與⊙O相切于E,AD垂直CDD,BC垂直CDC,EF垂直ABF,連接AEBE.證明:

(1)∠FEB=∠CEB;
(2)EF2AD·BC.

(1)見解析(2)見解析

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,AB為☉O直徑,直線CD與☉O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,連接AE,BE.證明:

(1)∠FEB=∠CEB;
(2)EF2=AD·BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC內(nèi)接于⊙O,點D在OC的延長線上,sinB=,∠D=30°.

(1)求證:AD是⊙O的切線.
(2)若AC=6,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直線AB過圓心O,交于F(不與B重合),直線相切于C,交AB于E,且與AF垂直,垂足為G,連結(jié)AC

求證:(1);(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知平面α∥平面β,點P是平面α、β外一點,且直線PB分別與α、β相交于A、B,直線PD分別與α、β相交于C、D.

(1)求證:AC∥BD;
(2)如果PA=4 cm,AB=5 cm,PC=3 cm,求PD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點EDB垂直BE交圓于點D.

(1)證明:DBDC;
(2)設(shè)圓的半徑為1,BC,延長CEAB于點F,求△BCF外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為半圓的直徑,,為半圓上一點,過點作半圓的切線,過點,交圓于點,

(Ⅰ)求證:平分;
(Ⅱ)求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,、是圓的半徑,且是半徑上一點:延長交圓于點,過作圓的切線交的延長線于點.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,的直徑,弦垂直,并與相交于點,點為弦上異于點的任意一點,連結(jié)、并延長交于點.
⑴ 求證:、、四點共圓;
⑵ 求證:.

查看答案和解析>>

同步練習(xí)冊答案