已知函數(shù)f(3x)=log2
9x+1
2
,則f(
7
3
)的值是( 。
A、
1
2
B、1
C、log2
5
D、2
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)性質(zhì)和對數(shù)性質(zhì)求解.
解答: 解:∵f(3x)=log2
9x+1
2
,
∴f(
7
3
)=f(3×
7
9
)=log2
7+1
2
=log22=1.
故選:B.
點評:本題考查函數(shù)值的求法,解題時要認真審題,注意對數(shù)性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若m,n是兩條不同的直線,α,β,γ是三個不同的平面,則下列命題中的真命題是( 。
A、若m?β,α⊥β,則m⊥α
B、若α∩γ=m,β∩γ=n,m∥n,則α∥β
C、若m⊥β,m∥α,則α⊥β
D、若α⊥γ,α⊥β,則β⊥γ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(-1,2),
b
=(5,k),若
a
b
,則實數(shù)k的值為( 。
A、5B、-5C、10D、-10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式x2+ax+1≥0對一切x∈(0,
1
2
]成立,則a的最小值為( 。
A、-
5
2
B、0
C、-2
D、-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)P為橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點,F(xiàn)1、F2為焦點,如果∠PF1F2=75°,∠PF2F1=15°,則橢圓的離心率為( 。
A、
2
2
B、
3
2
C、
2
3
D、
6
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1
2
sinx+2,x∈[0,2π].
(1)用“五點法”畫出函數(shù)y=
1
2
sinx+2,x∈[0,2π]的簡圖;
(2)指出上述函數(shù)的單調(diào)區(qū)間;
(3)求函數(shù)的最值及取到最值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù)如下表:
1號2號3號4號5號
甲組45x910
乙組567y9
(Ⅰ)已知兩組技工在單位時間內(nèi)加工的合格零件平均數(shù)都為7,分別求甲、乙兩組技工在單位時間內(nèi)加工的合格零件的方差,并由此分析兩組技工的加工水平;
(Ⅱ)質(zhì)檢部分從該車間甲、乙兩組中各隨機抽取一名技工,對其加工的零件進行檢測,若2人加工的合格零件個數(shù)之和超過14,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

作出函數(shù)f(x)=-3x+4的圖象,并證明它是R上的減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三角形的頂點為A(2,4),B(0,-2),C(-2,3).求:
(Ⅰ)直線AB的方程;
(Ⅱ)求平行于AB的中位線所在的直線方程;
(Ⅲ)求△ABC的面積.

查看答案和解析>>

同步練習冊答案