8.直線的參數(shù)方程:$\left\{\begin{array}{l}x=2+t\\ y=1+\frac{{\sqrt{3}}}{3}t\end{array}\right.$(t為參數(shù)),則它的傾斜角為(  )
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$-\frac{π}{3}$

分析 根據(jù)參數(shù)方程得出直線的斜率,即可求出傾斜角.

解答 解:直線l的斜率k=$\frac{\sqrt{3}}{3}$,
∴直線的傾斜角為$\frac{π}{6}$.
故選A.

點評 本題考查了直線的參數(shù)方程與斜率,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x-1+$\frac{a}{{e}^{x}}$(a∈R).
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)求函數(shù)f(x)的極值;
(3)當(dāng)a=1時,若直線l:y=kx-1與曲線y=f(x)沒有公共點,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.四次多項式f(x)的四個實根構(gòu)成公差為2的等差數(shù)列,則f′(x)的所有根中最大根與最小根之差是( 。
A.2B.2$\sqrt{3}$C.4D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知$\overrightarrow a=(4,2),\overrightarrow b=(1,2)$,求$\overrightarrow a$與$\overrightarrow b$夾角的余弦值,并求$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,如果有性質(zhì)acosA=bcosB,則這個三角形的形狀是等腰或直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在極坐標(biāo)系中,以A(0,2)為圓心,2為半徑的圓的極坐標(biāo)方程為ρ=4sinθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)=$\frac{1}{3}$x3+x(x∈R),若任意實數(shù)x使得f(a-x)+f(ax2-1)<0成立,則a的取值范圍是(-∞,$\frac{1-\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在復(fù)平面內(nèi),方程|z|2+|z|=2|所表示的圖形是( 。
A.四個點B.兩條直線C.一個圓D.兩個圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)$\overrightarrow a$=(1,2),$\overrightarrow b$=(-1,x),若$\overrightarrow a$∥$\overrightarrow b$,則x=-2.

查看答案和解析>>

同步練習(xí)冊答案