1.下列不等式中成立的是( 。
A.sin(-$\frac{π}{8}$)<sin(-$\frac{π}{10}$)B.sin(-$\frac{23}{5}π$)$>sin(-\frac{17}{4}π)$
C.sin3>sin2D.sin$\frac{7π}{5}$>sin(-$\frac{2π}{5}$)

分析 利用正弦函數(shù)的單調(diào)性比較大。

解答 解:y=sinx在(-$\frac{π}{2}$,$\frac{π}{2}$)上是增函數(shù),在($\frac{π}{2}$,$\frac{3π}{2}$)上是減函數(shù),
∵-$\frac{π}{2}<-\frac{π}{8}<-\frac{π}{10}<0$,
∴sin(-$\frac{π}{8}$)<sin(-$\frac{π}{10}$).故A正確.
故選A.

點評 本題考查了正弦函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在正項等比數(shù)列{an}中,a1a3=1,a2+a3=$\frac{4}{3}$,則$\underset{lim}{n→∞}$(a1+a2+…+an)=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,已知tanA+tanB+tanAtanB=1,若△ABC最大邊的長為$\sqrt{6}$,則其外接圓的半徑為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.450°<α<540°,$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$=-sin$\frac{α}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,三個內(nèi)角A,B,C的對邊分別是a,b、c,如果a:b:c=1:1:$\sqrt{3}$,則A:B:C=( 。
A.1:1:2B.1:1:3C.1:1:4D.1:1:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.(1)函數(shù)f(x)=sinx•cos$\frac{x}{2}$,g(x)=cosx•sin$\frac{x}{2}$,那么[$\frac{π}{2}$,$\frac{3}{4}π$]是函數(shù)f(x)-g(x)的一個單調(diào)減區(qū)間;
(2)對于f(x)=sinx,若α為第一象限角,則f(α)+f($\frac{π}{2}$-α)>1;
(3)曲線y=cos(2x-$\frac{π}{6}$)的一條對稱軸方程是x=-$\frac{2}{3}$π;
(4)函數(shù)y=sin4x+cos2x的最小正周期是π;
(5)函數(shù)y=tan($\frac{x}{2}$-$\frac{π}{3}$)圖象的一個對稱中心是($\frac{5}{3}$π,0).
其中正確命題的序號是(2)(4)(5).(將你認(rèn)為正確的都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=sinα•tanα的奇偶性是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若命題“?x∈R,ax2-ax-2<0”是真命題,則實數(shù)a的取值范圍是(-8,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若實數(shù)x,y滿足$\left\{\begin{array}{l}x+y-3≥0\\ x-y-3≤0\\ 0≤y≤1\end{array}\right.$,則$z=\frac{2x+y}{x+y}$的最小值為( 。
A.$\frac{5}{3}$B.2C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案