【題目】設分別為橢圓的左、右焦點,點為橢圓的左頂點,點為橢圓的上頂點,且.
(Ⅰ)若橢圓的離心率為,求橢圓的方程;
(Ⅱ)設為橢圓上一點,且在第一象限內(nèi),直線與軸相交于點,若以為直徑的圓經(jīng)過點,證明: .
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩焦點分別為,其短半軸長為.
(1)求橢圓的方程;
(2)設不經(jīng)過點的直線與橢圓相交于兩點.若直線與的斜率之和為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù),有下列結(jié)論:
①的定義域為(-1, 1); ②的值域為(, );
③的圖象關于原點成中心對稱; ④在其定義域上是減函數(shù);
⑤對的定義城中任意都有.
其中正確的結(jié)論序號為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知各項是正數(shù)的數(shù)列的前項和為.若,且.
(1)求數(shù)列的通項公式;
(2)若對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖已知四棱錐的底面ABCD是邊長為2的正方形,底面ABCD,E,F分別為棱BC,AD的中點.
若,求異面直線PB和DE所成角的余弦值.
若二面角的余弦值為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圖一是美麗的“勾股樹”,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1代“勾股樹”,重復圖二的作法,得到圖三為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第代“勾股樹”所有正方形的個數(shù)與面積的和分別為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量=(-2,1),=(x,y).
(1)若x,y分別表示將一枚質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時第一次、第二次出現(xiàn)的點數(shù),求滿足的概率;
(2)若x,y在區(qū)間[1,6]內(nèi)取值,求滿足的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,點坐標為.
(1)如圖1,斜率存在且過點的直線與圓交于兩點.①若,求直線的斜率;②若,求直線的斜率.
(2)如圖2,為圓上兩個動點,且滿足,為中點,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com