2.如圖,F(xiàn)1、F2分別是雙曲線的左、右焦點(diǎn),過(guò)F1的直線與雙曲線的左、右兩支分別相交于B、A兩點(diǎn),若△ABF2為等邊三角形,則該雙曲線的離心率為( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{7}$D.3

分析 根據(jù)雙曲線的定義算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等邊三角形得∠F1AF2=120°,利用余弦定理算出c=$\sqrt{7}$a,結(jié)合雙曲線離心率公式即可算出雙曲線C的離心率.

解答 解:根據(jù)雙曲線的定義,可得|BF1|-|BF2|=2a,
∵△ABF2是等邊三角形,即|BF2|=|AB|,
∴|BF1|-|BF2|=2a,即|BF1|-|AB|=|AF1|=2a
又∵|AF2|-|AF1|=2a,
∴|AF2|=|AF1|+2a=4a,
∵△AF1F2中,|AF1|=2a,|AF2|=4a,∠F1AF2=120°,
∴|F1F2|2=|AF1|2+|AF2|2-2|AF1|•|AF2|cos120°,
即4c2=4a2+16a2-2×2a×4a×(-$\frac{1}{2}$)=28a2,解之得c=$\sqrt{7}$a,
由此可得雙曲線C的離心率e=$\frac{c}{a}$=$\sqrt{7}$.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,題目考查經(jīng)過(guò)雙曲線左焦點(diǎn)的直線被雙曲線截得弦AB與右焦點(diǎn)構(gòu)成等邊三角形,求雙曲線的離心率,著重考查了雙曲線的定義和簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=3,|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{37}$,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角是( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)i為虛數(shù)單位,則復(fù)數(shù)$\frac{17}{4-i}$的共軛復(fù)數(shù)為( 。
A.4+iB.4-iC.-4+iD.-4-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=|x-1|,若方程f(x)=$\sqrt{x+a}$有4個(gè)不相等的實(shí)根,則實(shí)數(shù)a的取值范圍是(  )
A.(-$\frac{5}{4}$,1)B.($\frac{3}{4}$,1)C.($\frac{4}{5}$,1)D.(-1,$\frac{3}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在長(zhǎng)方體ABCD-A1B1C1D1中,底面ABCD的邊長(zhǎng)為a的正方形,E是CC1的中點(diǎn),若該長(zhǎng)方體的外接球的表面積為10πa2,則異面直線AE與C1D1所成的角為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)命題p:?x∈R,x2-2x>a,其中a∈R,命題q:?x∈R,x2+2ax+2-a=0.如果“x2>1p”為假命題,“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)=2sin(ωx-$\frac{π}{6}$)-1最小正周期是π,則函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知點(diǎn)M的坐標(biāo)(x,y)滿足不等式組$\left\{\begin{array}{l}{2x+y-4≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}\right.$,N為直線y=-2x+2上任一點(diǎn),則|MN|的最小值是( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.1D.$\frac{\sqrt{17}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若點(diǎn)P(a,b)在函數(shù)y=-x2+3lnx的圖象上,點(diǎn)Q(c,d)在函數(shù)y=x+2的圖象上,則|PQ|的最小值為2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案