2.設(shè)全集U={0,1,2,3,4},集合A={1,2,3},B={2,3,4},則A∪(∁B)=( 。
A.{0,1,2,3}B.{1}C.{0,1}D.{0}

分析 由全集U及B,求出B的補(bǔ)集,找出B補(bǔ)集與A的并集即可.

解答 解:全集U={0,1,2,3,4},B={2,3,4},
∴∁B={0,1},
∵A={1,2,3},
∴A∪(∁B)={0,1,2,3},
故選:A.

點(diǎn)評 本題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>0)}\\{-{2}^{x}(x=0)}\\{{x}^{2}-1(x<0)}\end{array}\right.$,則f{f[f($\frac{1}{3}$)]}=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在如圖的程序框圖中,輸入n=60,按程序運(yùn)行后輸出的結(jié)果是5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在四面體ABCD中,已知AD⊥BC,AD=6,BC=2,且$\frac{AB}{BD}$=$\frac{AC}{CD}$=2,則V四面體ABCD的最大值為( 。
A.6B.2$\sqrt{11}$C.2$\sqrt{15}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)f(x)是定義在R上的奇函數(shù),且對任意實(shí)數(shù)x都有f(x+2)=-f(x),當(dāng)x∈[0,2]時(shí),f(x)=2x-x2,則f(0)+f(1)+f(2)+…+f(2015)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.點(diǎn)A是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上一點(diǎn),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),I是△AF1F2的內(nèi)心.若${S_{△IA{F_1}}}=2\sqrt{2}{S_{△I{F_1}{F_2}}}-{S_{△IA{F_2}}}$,則該橢圓的離心率為( 。
A.$\frac{1}{4}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知點(diǎn)E是拋物線x2=2y的對稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)F為拋物線的焦點(diǎn),P在拋物線上且滿足|PE|=m|PF|,當(dāng)m取最大值時(shí),點(diǎn)P恰好在以E,F(xiàn)為焦點(diǎn)的雙曲線上,則雙曲線的離心率為$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在棱長均為6的三棱錐紙盒內(nèi)放一個(gè)小正方體,正方體可以繞某對稱軸(即相對兩面的中心連線)旋轉(zhuǎn),則該正方體棱長的最大值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤$\frac{π}{2}$)的部分圖象如圖所示,其中A,B兩點(diǎn)之間的距離為5,那么下列說法正確的是( 。
A.函數(shù)f(x)的最小正周期為8
B.f(3)=-$\frac{1}{2}$
C.x=-1是函數(shù)f(x)的一條對稱軸
D.函數(shù)f(x)向左平移一個(gè)單位長度后所得的函數(shù)為偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案