【題目】已知函數(shù)f(x)=asinxcos2x+1(a,b∈R).
(1)當(dāng)a=1,且 時(shí),求f(x)的值域;
(2)若存在實(shí)數(shù) 使得成立,求實(shí)數(shù)a的取值范圍.
【答案】(1);(2)
【解析】分析:(1)根據(jù)三角函數(shù)的誘導(dǎo)公式得到f(x)=2+sinx,再由二次函數(shù)解析式,討論軸和區(qū)間的關(guān)系得到最值;(2)存在實(shí)數(shù)x使得函數(shù)|f(x)|≥a2成立,∴存在t∈[﹣1,1]使得函數(shù)|2t2+at|≥a2成立,即存在t∈[﹣1,1]使得2t2+at﹣a2≥0或2t2+at+a2≤0成立.
詳解:
(1)當(dāng)a=1時(shí),f(x)=sinx﹣cos2x+1=sinx﹣(1﹣2sin2x)+1=2sin2x+sinx
=2﹣;
時(shí),sinx∈[﹣1,1],
∴sinx=﹣時(shí),f(x)取得最小值﹣,sinx=1時(shí),f(x)取得最大值3,
∴f(x)的值域?yàn)?/span>[﹣,3];
(2)f(x)=asinx﹣cos2x+1=asinx+2sin2x=2sin2x+asinx,
設(shè)t=sinx,則t∈[﹣1,1],代入原函數(shù)得y=2t2+at,
∵存在實(shí)數(shù)x使得函數(shù)|f(x)|≥a2成立,
∴存在t∈[﹣1,1]使得函數(shù)|2t2+at|≥a2成立,
∴存在t∈[﹣1,1]使得2t2+at﹣a2≥0或2t2+at+a2≤0成立,
①當(dāng)a=0時(shí),2t2≥0或2t2≤0成立,
②當(dāng)a≠0時(shí),由于2t2+at+a2≤0的△=﹣7a2<0,不等式無(wú)解,
由2t2+at﹣a2≥0得(2t﹣a)(t+a)≥0,
當(dāng)a>0時(shí),2t2+at﹣a2≥0的解集是(﹣∞,﹣a]∪[,+∞),
由題意可得,≤1或﹣a≥﹣1,解得0<a≤2,
當(dāng)a<0時(shí),2t2+at﹣a2≥0的解集是(﹣∞,]∪[﹣a,+∞),
由題意可得,﹣a≤1或≥﹣1,解得﹣2≤a<0,
綜上,實(shí)數(shù)a的取值范圍是[﹣2,2].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐中,底面為矩形, 平面, ,點(diǎn)為的中點(diǎn).
()求證: 平面.
()求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線 ,曲線C2的參數(shù)方程為: ,(θ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系.
(1)求C1 , C2的極坐標(biāo)方程;
(2)射線 與C1的異于原點(diǎn)的交點(diǎn)為A,與C2的交點(diǎn)為B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列滿足,.
(1)求;
(2)先猜想出的一個(gè)通項(xiàng)公式,再用數(shù)學(xué)歸納法證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1的方程為3x+4y﹣12=0.
(1)若直線l2與l1平行,且過(guò)點(diǎn)(﹣1,3),求直線l2的方程;
(2)若直線l2與l1垂直,且l2與兩坐標(biāo)軸圍成的三角形面積為4,求直線l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1的方程為3x+4y﹣12=0.
(1)若直線l2與l1平行,且過(guò)點(diǎn)(﹣1,3),求直線l2的方程;
(2)若直線l2與l1垂直,且l2與兩坐標(biāo)軸圍成的三角形面積為4,求直線l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)與點(diǎn)都在橢圓上.
(1)求橢圓的方程;
(2)若的左焦點(diǎn)、左頂點(diǎn)分別為,則是否存在過(guò)點(diǎn)且不與軸重合的直線 (記直線與橢圓的交點(diǎn)為),使得點(diǎn)在以線段為直徑的圓上;若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 為的中點(diǎn),如圖 2.
(1)求證: 平面;
(2)求證: 平面;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l:ax+ y﹣1=0與x,y軸的交點(diǎn)分別為A,B,直線l與圓O:x2+y2=1的交點(diǎn)為C,D.給出下列命題:p:a>0,S△AOB= ,q:a>0,|AB|<|CD|.則下面命題正確的是( )
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com