【題目】在平面直角坐標(biāo)系xOy中,已知橢圓經(jīng)過,且右焦點坐標(biāo)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)A,B為橢圓的左,右頂點,C為橢圓的上頂點,P為橢圓上任意一點(異于A,B兩點),直線AC與直線BP相交于點M,直線BC與直線AP相交于點N,求證:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面多邊形中,AE=ED,AB=BD,且,現(xiàn)沿直線,將折起,得到四棱錐.
(1)求證: ;
(2)若,求PD與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新冠肺炎期間某商場開通三種平臺銷售商品,收集一月內(nèi)的數(shù)據(jù)如圖1;為了解消費者對各平臺銷售方式的滿意程度,該商場用分層抽樣的方法抽取4%的顧客進行滿意度調(diào)查,得到的數(shù)據(jù)如圖2.下列說法錯誤的是( )
A.樣本容量為240
B.若樣本中對平臺三滿意的人數(shù)為40,則
C.總體中對平臺二滿意的消費者人數(shù)約為300
D.樣本中對平臺一滿意的人數(shù)為24人
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若直線是曲線的一條切線,求k的值;
(2)當(dāng)時,直線與曲線無交點,求整數(shù)k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).(其中常數(shù),是自然對數(shù)的底數(shù))
(1)若,求在上的極大值點;
(2)()證明在上單調(diào)遞增;
()求關(guān)于的方程在上的實數(shù)解的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國天文學(xué)和數(shù)學(xué)著作《周髀算經(jīng)》中記載:一年有二十四個節(jié)氣,每個節(jié)氣的晷長損益相同(晷是按照日影測定時刻的儀器,晷長即為所測量影子的長度).二十四節(jié)氣及晷長變化如圖所示,相鄰兩個節(jié)氣晷長減少或增加的量相同,周而復(fù)始.已知每年冬至的晷長為一丈三尺五寸,夏至的晷長為一尺五寸(一丈等于十尺,一尺等于十寸),則說法不正確的是( )
A.相鄰兩個節(jié)氣晷長減少或增加的量為一尺
B.春分和秋分兩個節(jié)氣的晷長相同
C.立冬的晷長為一丈五寸
D.立春的晷長比立秋的晷長短
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是各項都為整數(shù)的等差數(shù)列,其前n項和為,是等比數(shù)列,且,,,.
(1)求數(shù)列,的通項公式;
(2)設(shè)cn=log2b1+log2b2+log2b3+…+log2bn, .
(i)求Tn;
(ii)求證:2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的右焦點為,左頂點為,線段的中點為,圓過點,且與交于, 是等腰直角三角形,則圓的標(biāo)準(zhǔn)方程是____________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com