分析 利用向量共線定理、向量基本定理即可得出.
解答 解:設(shè)$\frac{1}{3}(\overrightarrow{a}+\overrightarrow)$=$λ\overrightarrow{a}$+$(1-λ)t\overrightarrow$,
化為$(λ-\frac{1}{3})\overrightarrow{a}$+$(t-λt-\frac{1}{3})$$\overrightarrow$=$\overrightarrow{0}$,
∵$\overrightarrow{a}$,$\overrightarrow$是兩個不共線的非零向量,$\overrightarrow{a}$與$\overrightarrow$起點相同,
∴$\left\{\begin{array}{l}{λ-\frac{1}{3}=0}\\{t-λt-\frac{1}{3}=0}\end{array}\right.$,解得$λ=\frac{1}{3}$,t=$\frac{1}{2}$.
∴當(dāng)t$\frac{1}{2}$時,$\overrightarrow{a}$,t$\overrightarrow$,$\frac{1}{3}$($\overrightarrow{a}$+$\overrightarrow$)三向量的終點在同一條直線上.
點評 本題考查了向量共線定理、向量基本定理,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,+∞) | B. | (1,+∞) | C. | (0,1)∪(1,+∞) | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{4}{5}$ | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com