分析 x、y為正實(shí)數(shù),則$\frac{2x}{x+2y}$+$\frac{y}{x}$=$\frac{2}{1+2•\frac{y}{x}}$+$\frac{y}{x}$,令$\frac{y}{x}$=t>0,可得$\frac{2x}{x+2y}$+$\frac{y}{x}$=$\frac{2}{1+2t}$+t=$\frac{1}{\frac{1}{2}+t}$+$(t+\frac{1}{2})$-$\frac{1}{2}$,利用基本不等式的性質(zhì)即可得出.
解答 解:∵x、y為正實(shí)數(shù),則$\frac{2x}{x+2y}$+$\frac{y}{x}$=$\frac{2}{1+2•\frac{y}{x}}$+$\frac{y}{x}$,
令$\frac{y}{x}$=t>0,∴$\frac{2x}{x+2y}$+$\frac{y}{x}$=$\frac{2}{1+2t}$+t=$\frac{1}{\frac{1}{2}+t}$+$(t+\frac{1}{2})$-$\frac{1}{2}$≥$2\sqrt{(t+\frac{1}{2})•\frac{1}{t+\frac{1}{2}}}$-$\frac{1}{2}$=$\frac{3}{2}$,
當(dāng)且僅當(dāng)t=$\frac{1}{2}$時(shí)取等號(hào).
∴$\frac{2x}{x+2y}$+$\frac{y}{x}$的最小值為$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.
點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | {1,2,3} | C. | {0,1,2,3} | D. | {2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{13}$ | B. | -$\frac{17}{13}$ | C. | $\frac{7}{13}$或-$\frac{17}{13}$ | D. | $±\frac{7}{13}$或$±\frac{17}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com