分析 聯(lián)立由曲線y=3-x2和y=2x兩個解析式求出交點(diǎn)坐標(biāo),然后在x∈(-3,1)區(qū)間上利用定積分的方法求出圍成的面積即可.
解答 解:聯(lián)立得 $\left\{\begin{array}{l}{y=3{-x}^{2}}\\{y=2x}\end{array}\right.$,解得 $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$或 $\left\{\begin{array}{l}{x=-3}\\{y=-6}\end{array}\right.$,
設(shè)曲線與直線圍成的面積為S,
則S=∫-31(3-x2-2x)dx=$\frac{32}{3}$
故答案為:$\frac{32}{3}$.
點(diǎn)評 考查學(xué)生求函數(shù)交點(diǎn)求法的能力,利用定積分求圖形面積的能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com