如圖,四邊形均為菱形,,且
(Ⅰ)求證:平面;
(Ⅱ)求證:∥平面;
(Ⅲ)求二面角的余弦值.
(Ⅰ)證明:設(shè)相交于點(diǎn),連結(jié)
因?yàn)?四邊形為菱形,所以,
中點(diǎn).               ………………1分
,所以. ………3分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211122316627.png" style="vertical-align:middle;" />,
所以 平面. ………………4分   
(Ⅱ)證明:因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211121583534.png" style="vertical-align:middle;" />與均為菱形,
所以//,//
所以 平面//平面.                ………………7分                                        又平面,
所以// 平面.                   ……………8分                        
(Ⅲ)解:因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211121614528.png" style="vertical-align:middle;" />為菱形,且,所以△為等邊三角形.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211121817292.png" style="vertical-align:middle;" />為中點(diǎn),所以,故平面
兩兩垂直,建立如圖所示的空間直角坐標(biāo)系.………………9分                                   
設(shè).因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211121583534.png" style="vertical-align:middle;" />為菱形,,則,所以,

所以.          
所以.              
設(shè)平面的法向量為,則有
所以  取,得.………………12分           
易知平面的法向量為.     ………………13分               
由二面角是銳角,得 .      
所以二面角的余弦值為.      ……………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)幾何體的三視圖形狀都相同、大小均相等,那么這個(gè)幾何體不可以是
A.球B.三棱柱C.正方形D.圓柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知S、A、B、C是球O表面上的點(diǎn),SA⊥平面ABC、AB⊥BC,SA=AB=1,
BC=,則球O的表面積為(  )
A、                B、                 C、                D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,圓柱的高為2,底面半徑為3,AE、DF是圓柱的兩條母線,B、C是下底面圓周上的兩點(diǎn),已知四邊形ABCD是正方形.
(1)求證:
(2)求正方形ABCD的邊長(zhǎng);
(3)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)點(diǎn)P是直線L外一點(diǎn),過(guò)P與直線L成600角的直線有( )         
A.一條B.兩條C.無(wú)數(shù)條D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

空間給定不共面的A、B、C、D四個(gè)點(diǎn),其中任意兩點(diǎn)的距離都不相同,考慮具有如下性質(zhì)的平面:A、B、C、D中有三個(gè)點(diǎn)到的距離相同,另外一個(gè)點(diǎn)到的距離是前三個(gè)點(diǎn)到的距離的2倍,這樣的平面的個(gè)數(shù)是                  
A.15                 B.23             C.26               D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)在四棱錐P-ABC中,底面ABCD是矩形,PA平面ABCD,M,N分別是AB,PC的中點(diǎn)。
(1)求證:MN∥平面PAD。
(2)求證:MNCD.
(3)若PD與平面ABCD所成的角為450,
求證:MN平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在正方體中, 的中點(diǎn)
求證:①∥平面
②平面∥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一個(gè)結(jié)晶體的形狀為平行六面體,其中,以頂點(diǎn)為端點(diǎn)的三條棱長(zhǎng)都等于1,且它們彼此的夾角都是,那么以這個(gè)頂點(diǎn)為端點(diǎn)的晶體的對(duì)角線的長(zhǎng)為       

查看答案和解析>>

同步練習(xí)冊(cè)答案