8.曲線y=x2-1與y=1+x3在x=x0處的切線互相垂直,則x0等于( 。
A.$\frac{\sqrt{36}}{6}$B.-$\frac{\root{3}{36}}{6}$C.$\frac{2}{3}$D.-$\frac{2}{3}$或0

分析 求出原函數(shù)的導(dǎo)函數(shù),得到兩函數(shù)在在x=x0處的導(dǎo)數(shù)值,由其乘積等于-1得答案.

解答 解:由y=x2-1,得y′=2x,
∴x=x0,y′=2x0
由y=1+x3,得y′=3x2,
∴x=x0,y′=3x02
∵曲線y=x2-1與y=1-+3在x=x0處的切線互相垂直,
∴2x0•3x02=-1.
解得:x0=-$\frac{\root{3}{36}}{6}$.
故選:B.

點評 本題考查了利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,過曲線上某點處的切線的斜率,就是函數(shù)在該點處的導(dǎo)數(shù)值,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=(x2-3)ex,當(dāng)m在R上變化時,設(shè)關(guān)于x的方程f2(x)-mf(x)-$\frac{12}{e^2}$=0的不同實數(shù)解的個數(shù)為n,則n的所有可能的值為(  )
A.3B.1或3C.3或5D.1或3或5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.下列寫法正確的是④⑤(填序號).
①$\sqrt{a}$∉Q;②當(dāng)n∈N時,由所有(-1)n的數(shù)值組成的集合為無限集;③π∈Q;④-1∈Z;⑤$\sqrt{3}$∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={x|x2+px+q=0},集合B={x|x2-x+r=0},且A∩B={-1},A∪B={-1,2},求p、q、r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)的定義域為(-2,2),g(x)=f(x+1)+f(3-2x),求g(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a,b,m,n表示直線,α,β,γ表示平面,則正確的是( 。
A.若a∥α,b?α,則a∥bB.若α⊥β,γ⊥β,則α∥γ
C.若a⊥α,b⊥α,則a∥bD.若m∥α,α∩β=n,則m∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|x≥0},B={y||y|≤2,y∈Z},則下列結(jié)論正確的是( 。
A.A∩B=∅B.(∁RA)∪B={x|x<0}C.A∪B={x|x≥0}D.(∁RA)∩B={-2,-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)集合A={x||x|<2},B={x|x>a},全集U=R,若A⊆∁UB,則a的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)集合A={x|-3≤x≤2},B={x|2k-1≤x≤k-1},且A?B,則實數(shù)k的取值范圍是[-1,+∞).

查看答案和解析>>

同步練習(xí)冊答案