15.若變量x,y滿足$\left\{{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}}$,則$\frac{y+1}{x-2}$的最大值為$-\frac{1}{2}$.

分析 由約束條件作出可行域,由$\frac{y+1}{x-2}$的幾何意義,即可行域內(nèi)的動(dòng)點(diǎn)與定點(diǎn)連線的斜率求得答案.

解答 解:由約束條件$\left\{{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}}$,作出可行域如圖,

$\frac{y+1}{x-2}$的幾何意義為可行域內(nèi)的動(dòng)點(diǎn)(x,y)與定點(diǎn)P(2,-1)連線的斜率,
∵${k}_{OP}=-\frac{1}{2}$.
∴$\frac{y+1}{x-2}$的最大值為-$\frac{1}{2}$.
故答案為:$-\frac{1}{2}$.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.圖中的偽代碼運(yùn)行后輸出的結(jié)果是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.己知C與F是線段AB上的兩點(diǎn),AB=12,AC=6,D是以A為圓心,AC為半徑的圓上的任意點(diǎn),線段FD的中垂線與直線AD交于點(diǎn)P,若P點(diǎn)的軌跡是雙曲線,則此雙曲線的離心率的取值范圍是(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.△ABC為等腰直角三角形,OA=1,OC為斜邊AB上的高,P為線段OC的中點(diǎn),則$\overrightarrow{AP}•\overrightarrow{OP}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知全集U=R,集合A={0,1,2},B={x∈Z|x2≤3},如圖陰影部分所表示的集合為{2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列各組函數(shù)中,表示同一個(gè)函數(shù)的是( 。
A.y1=$\frac{(x+3)(x-5)}{x+3}$,y2=x-5B.f(x)=x,g(x)=$\sqrt{{x}^{2}}$
C.f(x)=x,g(x)=$\root{3}{x^3}$D.$f(x)=|x|,g(x)={({\sqrt{x}})^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,則f(f(8))=log23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.以下四個(gè)命題中正確命題的個(gè)數(shù)是( 。
(1)?x∈R,log2x=0;(2)?x∈R,x2>0;(3)?x∈R,tanx=0;(4)?x∈R,3x>0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.甲,乙兩人從相距18千米的兩地同時(shí)出發(fā),相向而行$\frac{9}{5}$小時(shí)相遇.如果甲比乙先出發(fā)$\frac{2}{3}$小時(shí),那么乙出發(fā)后$\frac{3}{2}$小時(shí)兩人相遇.求:兩人的速度各是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案