20.下列各組函數(shù)中,表示同一個函數(shù)的是( 。
A.y1=$\frac{(x+3)(x-5)}{x+3}$,y2=x-5B.f(x)=x,g(x)=$\sqrt{{x}^{2}}$
C.f(x)=x,g(x)=$\root{3}{x^3}$D.$f(x)=|x|,g(x)={({\sqrt{x}})^2}$

分析 根據(jù)兩個函數(shù)的定義域相同,對應關系也相同,判斷它們是同一函數(shù).

解答 解:對于A,函數(shù)y1=$\frac{(x+3)(x-5)}{x+3}$=x-5(x≠-3),與y2=x-5(x∈R)的定義域不相同,所以不是同一函數(shù);
對于B,函數(shù)f(x)=x(x∈R),與g(x)=$\sqrt{{x}^{2}}$=|x|(x∈R)的對應關系不相同,所以不是同一函數(shù);
對于C,函數(shù)f(x)=x(x∈R),與g(x)=$\root{3}{{x}^{3}}$=x(x∈R)的定義域相同,對應關系也相同,所以是同一函數(shù);
對于D,函數(shù)f(x)=|x|(x∈R),與g(x)=${(\sqrt{x})}^{2}$=x(x≥0)的定義域不相同,對應關系也不相同,所以不是同一函數(shù).
故選:C.

點評 本題考查了判斷兩個函數(shù)是否為同一函數(shù)的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.如圖是某校高二年級舉辦的歌詠比賽上,七位評委為某選手打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差為3.2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在數(shù)列{an}中,a1=6,an+1=2an+3×2n,則通項an=(3n+3)•2n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)f(x)=$\frac{{{e^x}-{e^{-x}}}}{2}$是(  )
A.偶函數(shù),在(0,+∞)是增函數(shù)B.奇函數(shù),在(0,+∞)是增函數(shù)
C.偶函數(shù),在(0,+∞)是減函數(shù)D.奇函數(shù),在(0,+∞)是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若變量x,y滿足$\left\{{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}}$,則$\frac{y+1}{x-2}$的最大值為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.集合{1,2}的子集個數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知集合A={x|x2-4x-5<0},B={x|2<x<4},則A∩B=( 。
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設f(x)=4cos(ωx+$\frac{π}{6}$)sinωx-cos2ωx+1,其中0<ω<2.
(Ⅰ)若x=$\frac{π}{4}$是函數(shù)f(x)的一條對稱軸,求函數(shù)f(x)的周期T;
(Ⅱ)若函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上為增函數(shù),求ω的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知橢圓x2+$\frac{{y}^{2}}{9}$=1的上、下兩個焦點分別為F,F(xiàn)′.G是橢圓上任意一點,已知橢圓的上頂點為A.下頂點為A′.左頂點為B.右頂點為B′.若點M為AB的中點.則|GM|+|GF′|的最大值( 。
A.6+$\sqrt{3}$B.6-$\sqrt{3}$C.6+$\frac{\sqrt{42-24\sqrt{2}}}{2}$D.6-$\frac{\sqrt{42-24\sqrt{2}}}{2}$

查看答案和解析>>

同步練習冊答案