分析 根據(jù)圓的標(biāo)準(zhǔn)方程結(jié)合x2+y2的幾何意義利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:x2+y2-4x+1=0等價(jià)為(x-2)2+y2=3,則圓心C(2,0),半徑R=$\sqrt{3}$,
x2+y2的幾何意義為圓上的點(diǎn)到原點(diǎn)距離的平方.
原點(diǎn)到圓心的距離d=2,
則圓上點(diǎn)到圓的最小值為|R-d|=2-$\sqrt{3}$,
則x2+y2的最小值為$7-4\sqrt{3}$.
故答案為:$7-4\sqrt{3}$.
點(diǎn)評 本題主要考查圓的方程的應(yīng)用,把圓的一般方程化為圓的標(biāo)準(zhǔn)方程并會(huì)由圓的標(biāo)準(zhǔn)方程找出圓心坐標(biāo)與半徑是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 外心 | B. | 內(nèi)心 | C. | 重心 | D. | 垂心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{{4,-\frac{1}{6}}\right\}$ | B. | $\left\{{4,\frac{2}{3},-1}\right\}$ | C. | $\left\{{-\frac{1}{6},\frac{2}{3},-1}\right\}$ | D. | $\left\{{4,-\frac{1}{6},\frac{2}{3},-1}\right\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m,n是奇數(shù),且m<n | B. | m是偶數(shù),n是奇數(shù),且m>n | ||
C. | m是偶數(shù),n是奇數(shù),且m<n | D. | m是奇數(shù),n是偶數(shù),且m>n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com