4.已知集合A={x|-4<x<1},B={x|($\frac{1}{2}$)x≥2}.
(1)求A∩B,A∪B;
(2)設(shè)函數(shù)f(x)=$\sqrt{lo{g}_{4}(2x-3)}$的定義域?yàn)镃,求(∁RA)∩C.

分析 (1)化簡(jiǎn)集合B,根據(jù)交集、并集的定義寫出A∩B、A∪B;
(2)求出函數(shù)f(x)的定義域C、再根據(jù)補(bǔ)集與交集的定義計(jì)算即可.

解答 解:(1)集合A={x|-4<x<1},
B={x|($\frac{1}{2}$)x≥2}={x|x≤-1};
∴A∩B={x|-4<x≤-1},
A∪B={x|x<1};
(2)函數(shù)f(x)=$\sqrt{lo{g}_{4}(2x-3)}$,
∴l(xiāng)og4(2x-3)≥0,
∴2x-3≥1,
解得x≥2;
∴f(x)的定義域?yàn)镃={x|x≥2},
又(∁RA)={x|x≤-4或x≥1},
∴(∁RA)∩C={x|x≥2}.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.一袋中有大小相同的5個(gè)紅球和2個(gè)白球,如果不放回地取2個(gè)小球.在第1次取到紅球的條件下,第2次取到紅球的概率是( 。
A.$\frac{3}{5}$B.$\frac{3}{10}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asinB=-$\sqrt{3}$bcos(B+C)
(1)求角A的大小
(2)若a=$\sqrt{13}$,c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{1≤x≤3}\\{-1≤x-y≤0}\end{array}\right.$
(Ⅰ)求z=2x-y的最大值;
(Ⅱ)求z=$\sqrt{{x}^{2}+{y}^{2}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,已知四邊形ABCD為正方形,EA⊥平面ABCD,CF∥EA,且EA=$\sqrt{2}$AB=2CF=2
(1)求證:EC⊥平面BDF;
(2)求二面角E-BD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,已知點(diǎn)P是平行四邊形ABCD所在平面外一點(diǎn),M、N分別是AB、PC的中點(diǎn);
(1)求證:MN∥平面PAD.
(2)在PB上確定一點(diǎn)Q,使平面MNQ∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x3-ax2-3x
(1)若函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍
(2)若x=-$\frac{1}{3}$是函數(shù)f(x)的極值點(diǎn),求函數(shù)f(x)在[1,a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知一個(gè)圓錐內(nèi)接于球O(圓錐的底面圓周及頂點(diǎn)均在球面上),若球的半徑R=5,圓錐的高是底面半徑的2倍,則圓錐的體積為( 。
A.128πB.32πC.$\frac{128π}{3}$D.$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.為得到函數(shù)y=sin2x的圖象,要將函數(shù)$y=sin({2x+\frac{π}{4}})$的圖象向右平移至少$\frac{π}{8}$個(gè)單位.

查看答案和解析>>

同步練習(xí)冊(cè)答案