分析 由約束條件作出可行域.
(1)化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案;
(2)直接由$\sqrt{{x}^{2}+{y}^{2}}$的幾何意義求得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{1≤x≤3}\\{-1≤x-y≤0}\end{array}\right.$作出可行域如圖,
(1)由z=2x-y,得y=2x-z,
由圖可知,當(dāng)直線y=2x-z過(guò)點(diǎn)B(3,3)時(shí),直線在y軸上的截距最小,z有最大值為2×3-3=3;
(2)聯(lián)立$\left\{\begin{array}{l}{x=3}\\{x-y=-1}\end{array}\right.$,得C(3,4).
z=$\sqrt{{x}^{2}+{y}^{2}}$的幾何意義為可行域內(nèi)的動(dòng)點(diǎn)到原點(diǎn)的距離,
由圖可知,zmin=|OA|=$\sqrt{2}$.
zmax=|OC|=$\sqrt{{3}^{2}+{4}^{2}}$=5.
∴z的取值范圍是[$\sqrt{2}$,5].
點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{7}$ | B. | $\frac{1}{7}$ | C. | $\frac{2}{17}$ | D. | $\frac{4}{17}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∅ | B. | {-3,-2} | C. | {-3,-2,-1} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直角三角形 | B. | 正三角形 | ||
C. | 等腰三角形或直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com