5.在正方體ABCD-A1B1C1D1中,直線DC1與平面A1BD所成角的余弦值是(  )
A.$\frac{\sqrt{3}}{6}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

分析 以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線DC1與平面A1BD所成角的余弦值.

解答 解:以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
設(shè)正方體ABCD-A1B1C1D1中棱長為1,
則D(0,0,0),C1(0,1,1),A1(1,0,1),B(1,1,0),
$\overrightarrow{D{C}_{1}}$=(0,1,1),$\overrightarrow{D{A}_{1}}$=(1,0,1),$\overrightarrow{DB}$=(1,1,0),
設(shè)平面A1BD的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{A}_{1}}=x+z=0}\\{\overrightarrow{n}•\overrightarrow{DB}=x+y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,-1),
設(shè)直線DC1與平面A1BD所成角為θ,
則sinθ=$\frac{|\overrightarrow{D{C}_{1}}•\overrightarrow{n}|}{|\overrightarrow{D{C}_{1}}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{2}•\sqrt{3}}$=$\frac{\sqrt{2}}{\sqrt{3}}$,
∴cosθ=$\sqrt{1-(\frac{\sqrt{2}}{\sqrt{3}})^{2}}$=$\frac{\sqrt{3}}{3}$.
∴直線DC1與平面A1BD所成角的余弦值為$\frac{\sqrt{3}}{3}$.
故選:C.

點評 本題考查直線與平面所成角的余弦值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)$f(x)=\left\{\begin{array}{l}x+2,x≤0\\ 1gx,x>0\end{array}\right.$,則函數(shù)y=|f(x)|-1的零點個數(shù)是( 。
A.1B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},x>0}\\{\frac{1}{x^2},x<0}\end{array}\right.$,則f(f(-10))等于(  )
A.$\frac{1}{10}$B.10C.-$\frac{1}{10}$D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某學(xué)校隨機抽取部分新生調(diào)查其上學(xué)路上所需時間(單位:分鐘),并將所得數(shù)據(jù)制成頻率分布表如下
(1)求頻率分布表中x的值;
(2)如果上學(xué)路上所需時間不少于60分鐘的學(xué)生可申請在學(xué)校住宿,請估計學(xué)校1000名新生中有多少名學(xué)生可以申請住宿;
(3)現(xiàn)有5名上學(xué)路上時間小于40分鐘的新生,其中3人上學(xué)路上時間不小于20分鐘,則從這5人中任選2人,設(shè)這2人中上學(xué)路上時間小于20分鐘人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
分組頻率
[0,20)0.25
[20,40)x
[40,60)0.13
[60,80)0.06
[80,100)0.06

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.△ABC中,角A、B、C的對邊分別為a、b、c.已知a2+c2-ac=b2
(1)求角B;
(2)當(dāng)b=6,sinC=2sinA時,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.“a=-5”是“直線y=x+4與圓(x-a)2+(y-3)2=8相切”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.F1、F2是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的焦點,P是C上任一點,PF1交y軸于Q點,若P、Q、O、F2四點共圓且$\frac{P{F}_{1}}{P{F}_{2}}$+$\frac{P{F}_{2}}{P{F}_{1}}$=$\frac{8}{3}$,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知α是第三象限角,且f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α-π)tan(-α+\frac{3}{2}π)}{sin(-α-π)}$.
(1)若cos(α-$\frac{3}{2}$π)=$\frac{1}{5}$,求f(α);
(2)若α=-1920°,求f(α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.正四面體的棱長為4$\sqrt{6}$,頂點都在同一球面上,則該球的表面積為( 。
A.36πB.72πC.144πD.288π

查看答案和解析>>

同步練習(xí)冊答案